98%
921
2 minutes
20
Cover crop biomass is helpful for weed and pest control, soil erosion control, nutrient recycling, and overall soil health and crop productivity improvement. These benefits may vary based on cover crop species and their biomass. There is growing interest in the agricultural sector of using remotely sensed imagery to estimate cover crop biomass. Four small plot study sites located at the United States Department of Agriculture Agricultural Research Service, Crop Production Systems Research Unit farm, Stoneville, MS with different cereals, legumes, and their mixture as fall-seeded cover crops were selected for this analysis. A randomized complete block design with four replications was used at all four study sites. Cover crop biomass and canopy-level hyperspectral data were collected at the end of April, just before cover crop termination. High-resolution (3 m) PlanetScope imagery (Dove satellite constellation with PS2.SD and PSB.SD sensors) was collected throughout the cover crop season from November to April in the 2021 and 2022 study cycles. Results showed that mixed cover crop increased biomass production up to 24% higher compared to single species rye. Reflectance bands (blue, green, red and near infrared) and vegetation indices derived from imagery collected during March were more strongly correlated with biomass ( = 0-0.74) compared to imagery from November ( = 0.01-0.41) and April ( = 0.03-0.57), suggesting that the timing of imagery acquisition is important for biomass estimation. The highest correlation was observed with the near-infrared band ( = 0.74) during March. The R for biomass prediction with the random forest model improved from 0.25 to 0.61 when cover crop species/mix information was added along with Planet imagery bands and vegetation indices as biomass predictors. More study with multiple timepoint biomass, hyperspectral, and imagery collection is needed to choose appropriate bands and estimate the biomass of mix cover crop species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919649 | PMC |
http://dx.doi.org/10.3390/s23031541 | DOI Listing |
Plant Dis
September 2025
Michigan State University, Department of Plant, Soil and Microbial Sciences, 105 CIPS, East Lansing, Michigan, United States, 48824;
Caliciopsis pinea is the ascomycete plant pathogen that causes caliciopsis canker disease on North American Pinus strobus (eastern white pine). Infections result in downgrading of lumber due to canker formation and overall loss of vigor in P. strobus, which is a critical cover species throughout its native range.
View Article and Find Full Text PDFExp Appl Acarol
September 2025
Julius Kühn-Institut, Institute for Plant Protection in Horticulture and Urban Green, Messeweg 11/12, 38104, Braunschweig, Germany.
The tomato russet mite, Aculops lycopersici (Tryon), is a key pest of commercially grown tomatoes worldwide. Due to its minute size, its detection is often not timely for effective control. In this study, the approach of limiting A.
View Article and Find Full Text PDFToxicol Sci
September 2025
Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS, B3H 3Z1, Canada.
In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.
View Article and Find Full Text PDFCell Rep
September 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Seedlings emerged from the covering soil immediately undergo de-etiolation, ensuring plants switch from heterotrophic to photoautotrophic growth. This transition is essential for seedling development and survival. However, the underlying mechanism remains largely obscure.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Guizhou Institute of Forest Inventory and Planning, Guiyang 550003, China.
Global warming is accelerating the poleward and upward shifts in climatically suitable ranges of species. (switchgrass) is recognized for its dual value in China's dual-carbon strategy: mitigating food-energy land competition and restoring marginal ecosystems. However, the accuracy of habitat projections is constrained by three limitations: reliance on North American provenance data, uncalibrated model parameters, and insufficient scenario coverage.
View Article and Find Full Text PDF