Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phosphates in high concentrations are harmful pollutants for the environment, and new and cheap solutions are currently needed for phosphate removal from polluted liquid media. Iron oxide nanoparticles show a promising capacity for removing phosphates from polluted media and can be easily separated from polluted media under an external magnetic field. However, they have to display a high surface area allowing high removal pollutant capacity while preserving their magnetic properties. In that context, the reproducible synthesis of magnetic iron oxide raspberry-shaped nanostructures (RSNs) by a modified polyol solvothermal method has been optimized, and the conditions to dope the latter with cobalt, zinc, and aluminum to improve the phosphate adsorption have been determined. These RSNs consist of oriented aggregates of iron oxide nanocrystals, providing a very high saturation magnetization and a superparamagnetic behavior that favor colloidal stability. Finally, the adsorption of phosphates as a function of pH, time, and phosphate concentration has been studied. The undoped and especially aluminum-doped RSNs were demonstrated to be very effective phosphate adsorbents, and they can be extracted from the media by applying a magnet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921849PMC
http://dx.doi.org/10.3390/nano13030587DOI Listing

Publication Analysis

Top Keywords

iron oxide
12
polluted media
8
phosphate
5
phosphate capture
4
capture enhancement
4
enhancement designed
4
iron
4
designed iron
4
iron oxide-based
4
oxide-based nanostructures
4

Similar Publications

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles.

Beilstein J Nanotechnol

August 2025

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.

The preparation of multimodal nanoparticles by capping magnetic iron oxide nanoparticles (IONPs) with functional organic molecules is a major area of research for biomedical applications. Conjugation reactions, such as carbodiimide coupling and the highly selective class of reactions known as "click chemistry", have been instrumental in tailoring the ligand layers of IONPs to produce functional biomedical nanomaterials. However, few studies report the controls performed to determine if the loading of molecules onto IONPs is due to the proposed coupling reaction(s) employed, or some other unknown interaction with the IONP surface.

View Article and Find Full Text PDF

Metal oxide nanoparticles are employed in various applications such as medicine, environmental remediation, molecular sensing, and drug delivery. However, large-scale commercial production and the use of smaller-sized nanoparticles increase the potential risk of toxicity to humans. Therefore, there is an urgent need to investigate the toxicity of nanomaterials.

View Article and Find Full Text PDF

Review of engineered magnetic chitosan nanoparticles for drug delivery: Advances, challenges, and future prospects.

Int J Biol Macromol

September 2025

Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand. Electronic address:

Magnetic chitosan nanoparticles represent a promising platform in targeted drug delivery by merging the biocompatibility and mucoadhesiveness of chitosan with the superparamagnetic iron-oxide cores magnetite (Fe₃O₄) or maghemite (γ-Fe₂O₃). This synergy enables enhanced therapeutic precision through external magnetic guidance, controlled release, and stimuli-responsive behavior. MCNPs are particularly valuable in oncology, allowing site-specific drug delivery, magnetic hyperthermia, and real-time imaging via MRI.

View Article and Find Full Text PDF

Novel plant growth-promoting endophytic bacteria, Stenotrophomonas maltophilia SaRB5, facilitate phytoremediation by plant growth and cadmium absorption in Salix suchowensis.

Ecotoxicol Environ Saf

September 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China. Ele

Seven plant growth-promoting bacteria (PGPB) were isolated from extracts of surface-sterilized Sedum alfredii Hance. Among the seven isolates, the strain SaRB5 identified as Stenotrophomonas maltophilia through 16S rDNA sequence analysis, exhibited highest levels of heavy metal resistance and plant growth-promoting traits. SaRB5 tolerated high concentrations of cadmium (Cd) (1.

View Article and Find Full Text PDF

First-principles insights into structure and magnetism in ultra-small tetrahedral iron oxide nanoparticles.

Phys Chem Chem Phys

September 2025

Masaryk University, Faculty of Science, Department of Chemistry, Kotlářská 2, Brno, 611 37, Czech Republic.

Structural and magnetic properties of ultra-small tetrahedron-shaped iron oxide nanoparticles were investigated using density functional theory. Tetrahedral and truncated tetrahedral models were considered in both non-functionalized form and with surfaces passivated by pseudo-hydrogen atoms. The focus on these two morphologies reflects their experimental relevance at this size scale and the feasibility of performing fully relaxed, atomistically resolved first-principles simulations.

View Article and Find Full Text PDF