Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The skin is the largest organ of the human body. Skin injuries, especially full-thickness injuries, are a major treatment challenge in clinical practice. Therefore, wound dressing materials with therapeutic effects have great practical significance in healthcare. This study used photocrosslinkable gelatin methacryloyl (GelMA) and sulfhydrylated chitosan (CS-SH) to design a double-crosslinked hydrogel for wound dressing. When crosslinked together, the resulting hydrogels showed a highly porous inner structure, and enhanced mechanical properties and moisture retention capacity. The compression modulus of the GelMA/CS-SH hydrogel (GCH) reached up to about 40 kPa and was much higher than that of pure GelMA hydrogel, and the compression modulus was increased with the amount of CS-SH. In vitro study showed no cytotoxicity of obtained hydrogels. Interestingly, a higher concentration of CS-SH slightly promoted the proliferation of cells. Moreover, the double-crosslinked hydrogel exhibited antibacterial properties because of the presence of chitosan. In vivo study based on rats showed that full-thickness skin defects healed on the 15th day. Histological results indicate that the hydrogel accelerated the repair of hair follicles and encouraged the orderly growth of collagen fibers in the wound. Furthermore, better blood vessel formation and a higher expression of VEGFR were observed in the hydrogel group when compared with the untreated control group. Based on our findings, GCH could be a promising candidate for full-thickness wound dressing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917266PMC
http://dx.doi.org/10.3390/ijms24032447DOI Listing

Publication Analysis

Top Keywords

wound dressing
12
gelatin methacryloyl
8
sulfhydrylated chitosan
8
double-crosslinked hydrogel
8
compression modulus
8
hydrogel
6
wound
5
dual-crosslinked hydrogel
4
hydrogel based
4
based gelatin
4

Similar Publications

An Antibacterial and Electroactive Chitosan-Based Dressing with Dual Stimulus-Responsive Drug Delivery for Wound Healing.

Macromol Rapid Commun

September 2025

Key Laboratory of Textile Science & Technology, College of Textiles, Ministry of Education, Donghua University, Shanghai, China.

Persistent bacterial infections remain a major challenge in wound management. Although drug-loaded wound dressings have gained increasing attention, their therapeutic efficacy is often hindered by uncontrolled drug release and a lack of electrical signal responsiveness. Herein, an antibacterial dressing (CCS-PC) with electroactivity and stimulus-responsive drug release properties was fabricated via electro-assembly, wherein chitosan and ciprofloxacin hydrochloride (CIP) were co-deposited onto polypyrrole (PPy)-coated gauze.

View Article and Find Full Text PDF

Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.

View Article and Find Full Text PDF

Transformative Therapies for Wound Care: Insights into Tissue Engineering and Regenerative Medicine.

Adv Exp Med Biol

September 2025

Department of Stem Cells & Regenerative Medicine, Center for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.

Wound healing is a dynamic and complex process that consists of four interconnected phases: hemostasis, inflammation, proliferation, and remodeling. This complex process is based on the coordinated actions of growth factors, cytokines, and other cellular interactions. However, conditions such as diabetes and chronic illnesses can disrupt this process and lead to nonhealing wounds or chronic ulcers.

View Article and Find Full Text PDF

Background Diabetic foot ulcers (DFUs) are a major complication of diabetes, posing significant challenges due to impaired wound healing, increased infection risk, and frequent need for surgical intervention. Optimal wound care is essential to reduce morbidity, hospital stay, and healthcare costs. While povidone iodine is a common antiseptic dressing, Metrogyl (metronidazole) targets anaerobic bacteria and may offer superior outcomes in chronic, infected wounds.

View Article and Find Full Text PDF

Introduction: Not all wound patients are candidates for surgical debridement. A felted, reticulated open cell foam with an array of 10 mm holes (VFCC) for use with instillation therapy has been used to eliminate non-viable tissue from patient wound beds. The mechanisms for this have not been fully elucidated.

View Article and Find Full Text PDF