98%
921
2 minutes
20
We show that a tris(carbene)borate (TCB) ligand, namely [PhB(BuIm)] ([PhB(BuIm)] = phenyltris(3--butylimidazol-2-ylidene)borato), is capable of stabilizing an unprecedented nucleophilic Sn(II) cation salt. Unlike known Sn(II) cations, the strong electron-donating ability of [PhB(BuIm)] makes the cationic tin atom electron-rich, σ-donating yet slightly π-accepting, which allows for the ensuing facile oxidation with -chloranil and S as well as coordination with coinage metals. The former oxidations give the Sn(IV) cation salts, while the latter reactions produce the metal complexes. The electronic structures of these species are thoroughly probed by quantum chemical computations. These results uncover an added role for TCB ligands in isolating unprecedented p-block species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c04258 | DOI Listing |
Beilstein J Org Chem
August 2025
A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, INEOS, Vavilova St. 28, Moscow, 119334, Russia.
Reducing agents with phosphorus-hydrogen bond, such as sodium hypophosphite, phosphite, and hypophosphorous acid are commercially available in bulk amounts, however, their usage is understudied in organic processes. While NaHPO has proved to be an efficient four-electron reductant in the catalyst-free reductive amination, the influence of cation in hypophosphite salt has not been studied yet. This issue is a fundamentally important factor.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
Ether-based electrolytes are widely acknowledged for their potential to form stable solid electrolyte interfaces (SEIs) for stable anode performance. However, conventional ether-based electrolytes have shown a tendency for cation-solvent co-intercalation phenomena on graphite electrodes, resulting in lower capacity and higher voltage platforms compared to those of neat cation insertion in ester-based electrolytes. In response, we propose the development of weakly solvating ether solvents to weaken the interaction between cations and solvents, thereby suppressing co-intercalation behavior.
View Article and Find Full Text PDFArch Microbiol
September 2025
Department of Biological Sciences, Wichita State University, 26, 1845 Fairmount, Wichita, KS, 67260, USA.
Freezing point depression due to high salt concentration is crucial for liquid water to exist on cold worlds, expanding special regions where habitats are plausible. Determination of the growth tolerances of terrestrial microbes in analog systems impacts planetary protection protocols aimed at preventing interference with life detection missions or potential native ecosystems on celestial bodies. We measured the salinity tolerances of 18 salinotolerant bacteria (Bacillus, Halomonas, Marinococcus, Nesterenkonia, Planococcus, Salibacillus, and Terribacillus).
View Article and Find Full Text PDFRapid Commun Mass Spectrom
September 2025
Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif sur Yvette, France.
Rationale: Electrospray (ESI), the most popular desorption/ionization technique used in mass spectrometry-based metabolomics, generates both protonated and deprotonated molecules, as well as adduct ions, sodium being the most frequent monoatomic cation entering their composition. With the spread and generalization of untargeted data-dependent and independent tandem mass spectrometry experiments, considering product ion spectra of sodium-containing entities appears relevant to complement fragmentation information of their protonated and deprotonated counterparts.
Methods: Solutions of pure standards, mainly amino and organic acids, were prepared at 1 μg/mL and injected either by direct infusion or by flow-injection prior to ESI-MS/MS analysis.
Bioresour Technol
September 2025
Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China. Electronic address:
Microbial desalination cells (MDCs) have traditionally employed simplified NaCl solutions as feedwater for synchronous desalination and bioenergy recovery. Nevertheless, the specific mechanisms by which MDCs remove complex multi-ions from saline wastewater remain obscure. This study thoroughly investigated ion migration, bioelectrochemical dynamics, and microbial ecological responses across three distinct configurations: monovalent ions - PMDC, divalent cations - CMDC and anions - AMDC.
View Article and Find Full Text PDF