98%
921
2 minutes
20
Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition-based automatic process to utilize spectral information as molecular descriptors, which directly transforms experimental spectrum images to readable vectors. We demonstrate its machine learning application in the reaction yield dataset of Pd-catalyzed Buchwald-Hartwig cross-coupling with aryl halides. In addition, we also show that the predicted spectrum can serve as an alternative encoding source to support the model training.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202300011 | DOI Listing |
J Chem Inf Model
September 2025
Department of Chemistry, Delaware State University, Dover, Delaware 19901, United States.
The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.
View Article and Find Full Text PDFPLoS One
September 2025
Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt.
Polar protic and aprotic solvents can effectively simulate the maturation of breast carcinoma cells. Herein, the influence of polar protic solvents (water and ethanol) and aprotic solvents (acetone and DMSO) on the properties of 3-(dimethylaminomethyl)-5-nitroindole (DAMNI) was investigated using density functional theory (DFT) computations. Thermodynamic parameters retrieved from the vibrational analysis indicated that the DAMNI's entropy, heat capacity, and enthalpy increased with rising temperature.
View Article and Find Full Text PDFMol Divers
September 2025
Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492001, India.
Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.
View Article and Find Full Text PDFMol Divers
September 2025
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Institute of Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Localized corrosion in metallic materials is a stochastic phenomenon that causes irreversible structural failure. Its initiation, which occurs at the solid-liquid interface on the nanometer scale, remains difficult to predict and challenging to characterize. Herein, we describe an experimental platform that exploits advances in electrochemical liquid-phase scanning and transmission electron microscopy (LPSEM and LPTEM) to study pitting corrosion of thin-film pure aluminum in a saline environment in real time.
View Article and Find Full Text PDF