Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The amyloid aggregation of alpha-synuclein within the brain is associated with the pathogenesis of Parkinson's disease (PD) and other related synucleinopathies, including multiple system atrophy (MSA). Alpha-synuclein aggregates are a major therapeutic target for treatment of these diseases. We identify two small molecules capable of disassembling preformed alpha-synuclein fibrils. The compounds, termed CNS-11 and CNS-11g, disaggregate recombinant alpha-synuclein fibrils in vitro, prevent the intracellular seeded aggregation of alpha-synuclein fibrils, and mitigate alpha-synuclein fibril cytotoxicity in neuronal cells. Furthermore, we demonstrate that both compounds disassemble fibrils extracted from MSA patient brains and prevent their intracellular seeding. They also reduce in vivo alpha-synuclein aggregates in . Both compounds also penetrate brain tissue in mice. A molecular dynamics-based computational model suggests the compounds may exert their disaggregating effects on the N terminus of the fibril core. These compounds appear to be promising therapeutic leads for targeting alpha-synuclein for the treatment of synucleinopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963379PMC
http://dx.doi.org/10.1073/pnas.2217835120DOI Listing

Publication Analysis

Top Keywords

alpha-synuclein fibrils
12
alpha-synuclein
9
small molecules
8
aggregation alpha-synuclein
8
alpha-synuclein aggregates
8
prevent intracellular
8
fibrils
5
compounds
5
molecules disaggregate
4
disaggregate alpha-synuclein
4

Similar Publications

The bacterial OMP amyloids modulate α-synuclein and amyloid-β aggregation.

Int J Biol Macromol

September 2025

Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, 4 Tikhoretsky ave., 194064, St. Petersburg, Russia. Electronic address:

Growing evidence links gut microbiota to neurodegenerative diseases, yet direct molecular interactions between bacterial and host amyloid proteins remain incompletely understood. Bacterial amyloids represent an understudied yet potentially critical component of gut-brain communication in neurodegeneration. Here, we provide the first investigation of whether amyloids formed by outer membrane proteins (OMPs) of enterobacteria can modulate neurodegeneration-associated protein aggregation.

View Article and Find Full Text PDF

In Vitro Evaluation of Amide-Linked Coumarin Scaffolds for the Inhibition of α‑Synuclein and Tau Aggregation.

ACS Omega

September 2025

Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States.

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent neurodegenerative disorders characterized by continuous loss of functional neurons. The numbers of AD and PD patients will likely double by 2060 and 2040, reaching 13.9 and 1.

View Article and Find Full Text PDF

Microglia, brain-resident immune cells, are involved in pathophysiology of several neurodegenerative diseases, including Parkinson's disease. Given significant species-specific differences in microglia gene expression, particularly in disease-risk genes, as well as the highly reactive nature of these cells, studying human microglia in a whole brain environment is essential. Here, we established a humanized mouse model by transplanting human induced pluripotent stem cell-derived hematopoietic progenitor cells into the striatum of immunodeficient adult mice and injected human alpha-synuclein preformed fibrils to model Parkinson's disease pathology.

View Article and Find Full Text PDF

Lewy body dementia promotion by air pollutants.

Science

September 2025

Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Evidence links air pollution to dementia, yet its role in Lewy body dementia (LBD) remains unclear. In this work, we showed in a cohort of 56.5 million individuals across the United States that fine particulate matter (PM) exposure raises LBD risk.

View Article and Find Full Text PDF

In synucleinopathies, the protein α-synuclein misfolds into Lewy bodies (LBs) in patients with Lewy body disease (LBD) or into glial cytoplasmic inclusions (GCIs) in patients with multiple system atrophy (MSA). The ability of a single misfolded protein to cause disparate diseases is explained by the prion strain hypothesis, which argues that protein conformation is a major determinant of disease. While structural, biochemical, and biological studies show that LBD and MSA patient samples contain distinct α-synuclein strains, we recently reported the unexpected finding of a novel α-synuclein strain in a Parkinson's disease with dementia patient sample containing GCI-like co-pathology along with widespread LB pathology.

View Article and Find Full Text PDF