Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Use of glucagon-like peptide-1 receptor agonist or dipeptidyl peptidase 4 inhibitor has been shown to lower the incidence of Parkinson's disease in patients with diabetes mellitus. Therefore, using these two treatments may help treat Parkinson's disease. To further investigate the mechanisms of action of these two compounds, we established a model of Parkinson's disease by treating mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and then subcutaneously injected them with the glucagon-like peptide-1 receptor agonist exendin-4 or the dipeptidyl peptidase 4 inhibitor linagliptin. We found that both exendin-4 and linagliptin reversed motor dysfunction, glial activation, and dopaminergic neuronal death in this model. In addition, both exendin-4 and linagliptin induced microglial polarization to the anti-inflammatory M2 phenotype and reduced pro-inflammatory cytokine secretion. Moreover, in vitro experiments showed that treatment with exendin-4 and linagliptin inhibited activation of the nucleotide-binding oligomerization domain- and leucine-rich-repeat- and pyrin-domain-containing 3/caspase-1/interleukin-1β pathway and subsequent pyroptosis by decreasing the production of reactive oxygen species. These findings suggest that exendin-4 and linagliptin exert neuroprotective effects by attenuating neuroinflammation through regulation of microglial polarization and the nucleotide-binding oligomerization domain- and leucine-rich-repeat- and pyrin-domain-containing 3/caspase-1/interleukin-1β pathway in a mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Therefore, these two drugs may serve as novel anti-inflammatory treatments for Parkinson's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154509PMC
http://dx.doi.org/10.4103/1673-5374.360242DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
24
exendin-4 linagliptin
20
model parkinson's
12
mouse model
8
glucagon-like peptide-1
8
peptide-1 receptor
8
receptor agonist
8
dipeptidyl peptidase
8
peptidase inhibitor
8
microglial polarization
8

Similar Publications

Background And Objectives: Years before diagnosis of Parkinson disease (PD), dementia with Lewy bodies (DLB), or multiple system atrophy (MSA), mild prodromal manifestations can be detected. Longitudinal follow-up of people with prodromal synucleinopathy, particularly idiopathic/isolated REM sleep behavior disorder (iRBD), enables in-depth clinical phenotyping of early disease, which could facilitate stratification for clinical trials, provide the definition of appropriate end points, or predict phenoconversion more precisely. The aim of this study was to update and expand on previous studies assessing clinical evolution from iRBD to clinically diagnosed disease, up to 14 years before diagnosis.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a challenging neurodegenerative condition often prone to diagnostic errors, where early and accurate diagnosis is critical for effective clinical management. However, existing diagnostic methods often fail to fully exploit multimodal data or systematically incorporate expert domain knowledge. To address these limitations, we propose MKD-Net, a multimodal and knowledge-driven diagnostic framework that integrates imaging and non-imaging clinical data with structured expert insights to enhance diagnostic performance.

View Article and Find Full Text PDF

c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.

View Article and Find Full Text PDF

Background: The "Systematic Screening of Handwriting Difficulties in Parkinson's Disease" (SOS) test is the only tool specifically designed to evaluate handwriting in people with Parkinson's Disease (pwPD). It is language specific.

Objective: To assess the construct validity, intrarater and interrater reliability of the Italian version of the SOS test.

View Article and Find Full Text PDF