98%
921
2 minutes
20
Across phyla, voltage-gated ion channels (VGICs) allow excitability. The vacuolar two-pore channel AtTPC1 from the tiny mustard plant Arabidopsis thaliana has emerged as a paradigm for deciphering the role of voltage and calcium signals in membrane excitation. Among the numerous experimentally determined structures of VGICs, AtTPC1 was the first to be revealed in a closed and resting state, fueling speculation about structural rearrangements during channel activation. Two independent reports on the structure of a partially opened AtTPC1 channel protein have led to working models that offer promising insights into the molecular switches associated with the gating process. We review new structure-function models and also discuss the evolutionary impact of two-pore channels (TPCs) on K homeostasis and vacuolar excitability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tplants.2023.01.001 | DOI Listing |
Elife
November 2023
Julius-Maximilians-Universität (JMU), Biocenter, Department of Molecular Plant Physiology and Biophysics, Würzburg, Germany.
To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca. In our search for species-dependent functional TPC1 channel variants with different luminal Ca sensitivity, we found in total three acidic residues present in Ca sensor sites 2 and 3 of the Ca-sensitive AtTPC1 channel from that were neutral in its ortholog and also in those of many other Fabaceae.
View Article and Find Full Text PDFStress Biol
August 2022
Biomedical Center, University of Colima, 28045, Colima, Mexico.
Two-pore cation channel, TPC1, is ubiquitous in the vacuolar membrane of terrestrial plants and mediates the long distance signaling upon biotic and abiotic stresses. It possesses a wide pore, which transports small mono- and divalent cations. K is transported more than 10-fold faster than Ca, which binds with a higher affinity within the pore.
View Article and Find Full Text PDFTrends Plant Sci
June 2023
Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
Across phyla, voltage-gated ion channels (VGICs) allow excitability. The vacuolar two-pore channel AtTPC1 from the tiny mustard plant Arabidopsis thaliana has emerged as a paradigm for deciphering the role of voltage and calcium signals in membrane excitation. Among the numerous experimentally determined structures of VGICs, AtTPC1 was the first to be revealed in a closed and resting state, fueling speculation about structural rearrangements during channel activation.
View Article and Find Full Text PDFPlants (Basel)
December 2022
Electrical Signaling in Plants (ESP) Laboratory-Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca CL-3460000, Chile.
Two-pore channels (TPCs) are members of the superfamily of ligand-gated and voltage-sensitive ion channels in the membranes of intracellular organelles of eukaryotic cells. The evolution of ordinary plant TPC1 essentially followed a very conservative pattern, with no changes in the characteristic structural footprints of these channels, such as the cytosolic and luminal regions involved in Ca sensing. In contrast, the genomes of mosses and liverworts encode also TPC1-like channels with larger variations at these sites (TPC1b channels).
View Article and Find Full Text PDFFront Physiol
October 2022
Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
Macropinocytosis is a unique type of endocytosis accompanied by membrane ruffle formation. Closure of membrane ruffles leads to the uptake of large volumes of fluid phase and, subsequently, the formation of large vacuoles termed macropinosomes. Immune cells, such as dendritic cells, T cells, and macrophages, endocytose the surrounding amino acids and pathogens macropinocytosis either constitutively or in a stimulus-dependent fashion.
View Article and Find Full Text PDF