A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tailoring a Minimal Self-Replicate DNA Circuit for Highly Efficient Intracellular Imaging of microRNA. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Trace analyte detection in complex intracellular environment requires the development of simple yet robust self-sufficient molecular circuits with high signal-gain and anti-interference features. Herein, a minimal non-enzymatic self-replicate DNA circuitry (SDC) system is proposed with high-signal-gain for highly efficient biosensing in living cells. It is facilely engineered through the self-stacking of only one elementary cascade hybridization reaction (CHR), thus is encoding with more economic yet effective amplification pathways and reactants. Trigger (T) stimulates the activation of CHR for producing numerous T replica that reversely motivate new CHR reaction cycles, thus achieving the successive self-replication of CHR system with an exponentially magnified readout signal. The intrinsic self-replicate circuity design and the self-accelerated reaction format of SDC system is experimentally demonstrated and theoretically simulated. With simple circuitry configuration and low reactant complexity, the SDC amplifier enables the high-contrast and accurate visualization of microRNA (miRNA), ascribing to its robust molecular recognition and self-sufficient signal amplification, thus offering a promising strategy for monitoring these clinically significant analytes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202207961DOI Listing

Publication Analysis

Top Keywords

self-replicate dna
8
highly efficient
8
sdc system
8
tailoring minimal
4
minimal self-replicate
4
dna circuit
4
circuit highly
4
efficient intracellular
4
intracellular imaging
4
imaging microrna
4

Similar Publications