Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite the great promise that machine learning has offered in many fields of medicine, it has also raised concerns about potential biases and poor generalization across genders, age distributions, races and ethnicities, hospitals, and data acquisition equipment and protocols. In the current study, and in the context of three brain diseases, we provide evidence which suggests that when properly trained, machine learning models can generalize well across diverse conditions and do not necessarily suffer from bias. Specifically, by using multistudy magnetic resonance imaging consortia for diagnosing Alzheimer's disease, schizophrenia, and autism spectrum disorder, we find that well-trained models have a high area-under-the-curve (AUC) on subjects across different subgroups pertaining to attributes such as gender, age, racial groups and different clinical studies and are unbiased under multiple fairness metrics such as demographic parity difference, equalized odds difference, equal opportunity difference, etc. We find that models that incorporate multisource data from demographic, clinical, genetic factors, and cognitive scores are also unbiased. These models have a better predictive AUC across subgroups than those trained only with imaging features, but there are also situations when these additional features do not help.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962919PMC
http://dx.doi.org/10.1073/pnas.2211613120DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning models
8
models
5
bias machine
4
models mitigated
4
mitigated careful
4
careful training
4
training evidence
4
evidence neuroimaging
4
neuroimaging studies
4

Similar Publications

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF

Diagnostic and Screening AI Tools in Brazil's Resource-Limited Settings: Systematic Review.

JMIR AI

September 2025

Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.

Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.

Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.

Methods: A systematic review was performed.

View Article and Find Full Text PDF