Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We aimed to study the molecular mechanisms of chronic obstructive pulmonary disease (COPD) caused by cigarette smoke more comprehensively and systematically through different perspectives and aspects and to explore the role of protein acetylation modification in COPD. We established the COPD model by exposing C57BL/6J mice to cigarette smoke for 24 weeks, then analyzed the transcriptomics, proteomics, and acetylomics data of mouse lung tissue by RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), and associated these omics data through unique algorithms. This study demonstrated that the differentially expressed proteins and acetylation modification in the lung tissue of COPD mice were co-enriched in pathways such as oxidative phosphorylation (OXPHOS) and fatty acid degradation. A total of 19 genes, namely, , and , were significantly and differentially expressed at all the three levels of transcription, protein, and acetylation modification simultaneously. Then, we assessed the distribution and expression in different cell subpopulations of these 19 genes in the lung tissues of patients with COPD by analyzing data from single-cell RNA sequencing (scRNA-seq). Finally, we carried out the experimental verification using mouse lung tissue through quantitative real-time PCR (qRT-PCR), Western blotting (WB), immunofluorescence (IF), and immunoprecipitation (IP). The results showed that the differential acetylation modifications of mouse lung tissue are widely involved in cigarette smoke-induced COPD. is significantly downregulated and hyperacetylated in the lung tissues of humans and mice with COPD, which might be a potential biomarker for the diagnosis and/or treatment of COPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877466PMC
http://dx.doi.org/10.3389/fmed.2022.1030644DOI Listing

Publication Analysis

Top Keywords

acetylation modification
16
lung tissue
16
mouse lung
12
involved cigarette
8
cigarette smoke-induced
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
copd
8
cigarette smoke
8

Similar Publications

Triple-negative breast cancer (TNBC) presents a formidable therapeutic challenge due to its aggressive behavior, molecular heterogeneity, and lack of actionable targets. This study identifies activation-induced cytidine deaminase (AID) as a pivotal epigenetic driver reprogramming the tumor microenvironment (TME) via non-canonical regulation of NOTCH signaling. Mechanistically, AID recruits histone acetyltransferase 1 (HAT1) to form a chromatin-remodeling complex that binds the JAG1 promoter region (-1.

View Article and Find Full Text PDF

Heart failure remains a major global health concern characterized by complex pathophysiological processes and significant clinical challenges. While the distinct roles of metabolic and epigenetic dysregulation in heart failure are increasingly recognized, their intricate interplay remains a critical, yet underexplored, aspect of its pathophysiology. This review provides a comprehensive examination of this metabolic-epigenetic crosstalk, exploring how metabolic changes, such as impaired fatty acid oxidation, increased glycolysis, and mitochondrial dysfunction, alter epigenetic landscapes through shifts in intermediary metabolites including acetyl-CoA, NAD+, and α-ketoglutarate.

View Article and Find Full Text PDF

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression, yet their contribution to chemoimmunotherapy resistance remains poorly understood. Here, we identified the transcription factor ZEB1 as a critical driver of chemoimmunotherapy resistance in PC.

View Article and Find Full Text PDF

Dendritic cells: understanding ontogeny, subsets, functions, and their clinical applications.

Mol Biomed

September 2025

National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.

Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.

View Article and Find Full Text PDF