Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Temperature has an important influence on plant growth and development. In protected agriculture production, accurate prediction of temperature environment is of great significance. However, due to the time series, nonlinear and multi coupling characteristics of temperature, it is difficult to achieve accurate prediction. We proposed a method for building a solar greenhouse temperature prediction model based on a timeseries analysis, that considers the time series characteristics and dynamic temperature changes in the greenhouse system. The method would predict the temperature of greenhouse, and provide reference for the temperature change law in protected agriculture. A parameter analysis was performed on the nonlinear autoregressive exogenous (NARX) neural network, and a solar greenhouse temperature time series prediction model was established using the NARX regression neural network. The results showed that the proposed model depicted a maximum absolute error of 0.67 °C, and model correlation coefficient of 0.9996. Compared with the wavelet and BP neural networks, the NARX regression neural network accurately predicted and significantly outperformed in the solar greenhouse temperature prediction model. Moreover, the prediction model can accurately predict temperature trends within the solar greenhouse and is pivotal to obtaining precise control of solar greenhouse temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884198 | PMC |
http://dx.doi.org/10.1038/s41598-022-24072-1 | DOI Listing |