98%
921
2 minutes
20
Importance: Differentiating between malignant and benign etiology in large-bowel wall thickening on computed tomography (CT) images can be a challenging task. Artificial intelligence (AI) support systems can improve the diagnostic accuracy of radiologists, as shown for a variety of imaging tasks. Improvements in diagnostic performance, in particular the reduction of false-negative findings, may be useful in patient care.
Objective: To develop and evaluate a deep learning algorithm able to differentiate colon carcinoma (CC) and acute diverticulitis (AD) on CT images and analyze the impact of the AI-support system in a reader study.
Design, Setting, And Participants: In this diagnostic study, patients who underwent surgery between July 1, 2005, and October 1, 2020, for CC or AD were included. Three-dimensional (3-D) bounding boxes including the diseased bowel segment and surrounding mesentery were manually delineated and used to develop a 3-D convolutional neural network (CNN). A reader study with 10 observers of different experience levels was conducted. Readers were asked to classify the testing cohort under reading room conditions, first without and then with algorithmic support.
Main Outcomes And Measures: To evaluate the diagnostic performance, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for all readers and reader groups with and without AI support. Metrics were compared using the McNemar test and relative and absolute predictive value comparisons.
Results: A total of 585 patients (AD: n = 267, CC: n = 318; mean [SD] age, 63.2 [13.4] years; 341 men [58.3%]) were included. The 3-D CNN reached a sensitivity of 83.3% (95% CI, 70.0%-96.6%) and specificity of 86.6% (95% CI, 74.5%-98.8%) for the test set, compared with the mean reader sensitivity of 77.6% (95% CI, 72.9%-82.3%) and specificity of 81.6% (95% CI, 77.2%-86.1%). The combined group of readers improved significantly with AI support from a sensitivity of 77.6% to 85.6% (95% CI, 81.3%-89.3%; P < .001) and a specificity of 81.6% to 91.3% (95% CI, 88.1%-94.5%; P < .001). Artificial intelligence support significantly reduced the number of false-negative and false-positive findings (NPV from 78.5% to 86.4% and PPV from 80.9% to 90.8%; P < .001).
Conclusions And Relevance: The findings of this study suggest that a deep learning model able to distinguish CC and AD in CT images as a support system may significantly improve the diagnostic performance of radiologists, which may improve patient care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11984516 | PMC |
http://dx.doi.org/10.1001/jamanetworkopen.2022.53370 | DOI Listing |
EBioMedicine
September 2025
Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:
Eur J Radiol
September 2025
Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China. Electronic address:
Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.
Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.
J Org Chem
September 2025
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.
The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Department of Oral and Maxillofacial Surgery, University of Ulsan Hospital, University of Ulsan College of Medicine.
This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.
View Article and Find Full Text PDF