98%
921
2 minutes
20
Surface-enhanced Raman scattering (SERS) is widely explored for the elucidation of underlying mechanisms behind biological processes. However, the capability of absolute quantitation of the number of nanoparticles from the SERS response remains a challenge. Here, we show for the first time the development of a new 2D quantitation model to allow calibration of the SERS response against the absolute concentration of SERS nanotags, as characterized by single particle inductively coupled plasma mass spectrometry (spICP-MS). A novel printing approach was adopted to prepare gelatin-based calibration standards containing the SERS nanotags, which consisted of gold nanoparticles and the Raman reporter 1,2-bis(4-pyridyl)ethylene. spICP-MS was used to characterize the Au mass concentration and particle number concentration of the SERS nanotags. Results from laser ablation inductively coupled plasma time-of-flight mass spectrometry imaging at a spatial resolution of 5 μm demonstrated a homogeneous distribution of the nanotags (between-line relative standard deviation < 14%) and a linear response of Au with increasing nanotag concentration ( = 0.99634) in the printed gelatin standards. The calibration standards were analyzed by SERS mapping, and different data processing approaches were evaluated. The reported calibration model was based on an "active-area" approach, classifying the pixels mapped as "active" or "inactive" and calibrating the SERS response against the total Au concentration and the particle number concentration, as characterized by spICP-MS. This novel calibration model demonstrates the potential for quantitative SERS imaging, with the capability of correlating the nanoparticle concentration to biological responses to further understand the underlying mechanisms of disease models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909670 | PMC |
http://dx.doi.org/10.1021/acs.analchem.2c03779 | DOI Listing |
ACS Omega
September 2025
Mads Clausen Institute, NanoSYD, University of Southern Denmark (SDU), Alsion 2, 6400 Sønderborg, Denmark.
Detection of micro- and nanoplastic particles at extremely low concentrations in complex matrices is a critical goal in environmental science and regulatory frameworks. Surface-enhanced Raman spectroscopy (SERS) offers unique advantages for detecting molecular species in such mixtures, relying solely on their characteristic fingerprints. However, its application for plastic particles has been constrained due to weak analyte-substrate interactions.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China.
Background: With the development of modern agriculture, neonicotinoid pesticides have been widely used due to their high efficiency and strong systemic properties. However, excessive use leads to the accumulation of residues in the food chain, threatening the ecosystem and human health. Pesticide residues are easily accumulated in oilseed crops and become concentrated during the edible oil refining process.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. Electronic address:
Background: During intense exercise, anaerobic metabolism predominantly produces energy in the body, resulting in lactic acid (LA) accumulation, which contributes to muscle fatigue and soreness and may also impair neurological and cardiovascular functions. In endurance sports, the lactate threshold (LT) is a key indicator of an athlete's capacity to clear and utilize LA, directly influencing athletic performance and endurance. Therefore, LA detection is crucial for assessing the physical condition of both athletes and the general population, as well as for optimizing training programs.
View Article and Find Full Text PDFLangmuir
September 2025
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States.
Aluminum nanoparticles (Al NPs) were synthesized via catalyzed thermal reduction of an aluminum precursor in the presence of a capping ligand. A systematic study was conducted to examine the effect of dilution on nanoparticle synthesis by varying the volume of anhydrous toluene across four dilution factors while maintaining constant molar quantities of the aluminum precursor, catalyst, and ligand. This methodology is relevant for scale-up processes, where more dilute conditions can mitigate nanoparticle reactivity and enhance safety.
View Article and Find Full Text PDFMetal nanoparticles (MNPs) have emerged as vital components in nanotechnology due to their unique ability to concentrate light at the nanoscale. This property makes them especially valuable in biosensing applications, where high sensitivity is essential. At the same time, cellulose-based materials like paper offer an affordable, widely available, and versatile platform, making them ideal for the development of paper-based microfluidic analytical devices (μPADs).
View Article and Find Full Text PDF