98%
921
2 minutes
20
Over the last 20 years, N-heterocyclic carbenes (NHCs) have emerged as a dominant direction in ligand development in transition metal catalysis. In particular, strong σ-donation in combination with tunable steric environment make NHCs to be among the most common ligands used for C-C and C-heteroatom bond formation. Herein, we report the study on steric and electronic properties of thiazol-2-ylidenes. We demonstrate that the thiazole heterocycle and enhanced π-electrophilicity result in a class of highly active carbene ligands for electrophilic cyclization reactions to form valuable oxazoline heterocycles. The evaluation of steric, electron-donating and π-accepting properties as well as structural characterization and coordination chemistry is presented. This mode of catalysis can be applied to late-stage drug functionalization to furnish attractive building blocks for medicinal chemistry. Considering the key role of N-heterocyclic ligands, we anticipate that N-aryl thiazol-2-ylidenes will be of broad interest as ligands in modern chemical synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814509 | PMC |
http://dx.doi.org/10.1038/s42004-022-00675-7 | DOI Listing |
Inorg Chem
September 2025
Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States.
The iron(I) dinitrogen complex PhB(AdIm)FeN, which is supported by a very bulky 1-adamantyl-substituted tris(carbene)borate ligand, reacts with equimolar CO at low temperature to afford the high spin ( = 3/2) complex PhB(AdIm)Fe(CO). This monocarbonyl complex reacts with additional CO to afford the low spin ( = 1/2) dicarbonyl complex PhB(AdIm)Fe(CO). By contrast, the high spin iron(I) tris(pyrazolyl)borate complex TpFe(CO) does not react with additional CO.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States.
We report the first paramagnetic boron tetraradical, comprising four boraphenanthrene-type units with boryl radical centers bridged by a central tetraphenylethene (TPE) linker. With strongly π-accepting and sterically demanding cyclic(alkyl)(amino) carbene ligands (), spin densities localize on the boron-carbene fragments (92%), consistent with a true boron-centered tetraradical. Magnetic measurements of reveal minimal spin-spin coupling, consistent with four noninteracting = 1/2 centers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Inorganic Materials Chemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
Lithium is the core material of modern battery technologies and fabricating the lithium-containing materials with atomic layer deposition (ALD) confers significant benefits in control of film composition and thickness. In this work, a new mononuclear N-heterocyclic carbene (NHC) stabilized lithium complex, [Li(NHC)(hmds)], is introduced as a promising precursor for ALD of lithium-containing thin films. Structural characterization is performed, comparing density functional theory (DFT) and single-crystal X-ray diffraction (SC-XRD), confirming a rare mononuclear structure.
View Article and Find Full Text PDFOrg Lett
September 2025
Kaili Catalyst & New Materials Co., LTD, Shaanxi Key Laboratory of Catalytic Materials and Technology, Xi'an 710299, China.
This study introduces a new class of (NHC)Pd(allyl)Cl complexes featuring thiazol-2-ylidene ligands, which exhibit enhanced steric and electronic properties compared to those of traditional imidazol-2-ylidenes. These air-stable Pd(II)-NHC catalysts demonstrate superior reactivity in chemoselective Suzuki-Miyaura cross-couplings of aryl bromides and amides. Kinetic studies reveal their superior reactivity over traditional imidazol-2-ylidene-based complexes.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstr. 20, Dresden 01069, Germany.
Metallofullerenes with endohedral lanthanides have emerged as a versatile class of single-molecule magnets owing to strong single-ion magnetic anisotropy, which can be realized in the interior of the fullerene cage. Since exohedral chemical modification of fullerenes is often used to adjust their properties and processability for prospective practical applications, it is necessary to understand how it can affect their magnetic properties. In this work, we studied how a popular [2 + 1] cycloaddition reaction, photochemical addition of adamantylidene (Ad), affects single-ion magnetic anisotropy and single-molecule magnetism of MScN@C (M = Nd, Dy).
View Article and Find Full Text PDF