Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metallic glasses or amorphous alloys, with their excellent chemical stability, disordered atomic arrangement, and ability for thermoplastic nanostructuring, show promising performance toward a range of electrocatalytic reactions in proton-exchange membrane fuel cells. However, there are knowledge gaps and a distinct lack of understanding of the role of amorphous alloy chemistry in determining their catalytic activity. Here, we demonstrate the influence of alloy chemistry and the associated electronic structure on the hydrogen oxidation reaction (HOR) activity of a systematic series of PtPdCuNiP bulk metallic glasses (BMGs) with = 0 to 42.5 at%. The HOR activity and electrochemical active surface area as a function of composition were in the form of volcano plots, with a peak around equal proportion of Pt and Pd. The lower relative electron work function and higher binding energy of the Pt core level explain the reduced charge-transfer resistance and improved electrocatalytic activity due to weakened chemisorption of protons in the mid-range composition. Density functional theory calculations show the lower free energy change and higher hydrogen adsorption density for these PtPdCuNiP BMGs, suggesting a synergistic effect from the presence of both noble metals, Pt and Pd.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c18266DOI Listing

Publication Analysis

Top Keywords

metallic glasses
12
hydrogen oxidation
8
oxidation reaction
8
alloy chemistry
8
hor activity
8
model metallic
4
glasses superior
4
superior electrocatalytic
4
electrocatalytic performance
4
performance hydrogen
4

Similar Publications

Membrane technology for gas separation is more efficient and energy-saving than thermally driven processes, including cryogenic distillation and adsorption. Metal-organic framework (MOF) and related glass membranes hold great potential for precise gas separation, but it remains challenging to construct ultrathin MOF glass membranes and optimize their transport pathways. In this study, a strategy based on vapor-linker deposition and melt-quenching is reported to design ultrathin zeolitic imidazolate framework (ZIF) glass membranes with node-missing defect passageways.

View Article and Find Full Text PDF

In this paper, we investigated the thermal, dynamical, and structural properties, as well as association patterns, in 3-phenyl-1-propanol (3P1Pol) and 3-phenyl-1-propanal (3P1Pal), with special attention paid to the latter compound. Both systems turned out to be good glass formers, differing by 17 K in the glass transition temperature, which indicated a strong change in the self-assembly pattern. This supposition was further confirmed by the analysis of dielectric spectra, where, apart from the α-relaxation, also a unique Debye (D)-mode, being a fingerprint of the self-association, characterized by different dynamical properties (dielectric strength, timescale separation from the α-process), was detected in both samples.

View Article and Find Full Text PDF

Biomass-based polymers such as poly(lactic acid) (PLA) have attracted much attention, because they are renewable, biocompatible, and nontoxic to the environment and have been used in various fields such as biomedical, agricultural, and food packaging industries. However, one of the common drawbacks of PLA-based materials is their low glass transition temperature in the amorphous state, while adding phenylphosphonic acid zinc salt (PPA-Zn) as a nucleating agent was found to be a promising method to improve the physical property of PLA. On the other hand, degradation of PLA-based materials in the environment may cause the pollution from the metal of a nucleating agent in PLA and quantification of nucleating agents in polymers is of interest.

View Article and Find Full Text PDF

With the rapid development of the nuclear medicine business worldwide, the removal of iodine-131 from specific contaminated environments to protect public health has important application prospects. In this study, the surface decontamination mechanism of Ce(IV)/HNO3 as a decontaminant for iodine-131-contaminated nonmetallic materials was investigated by using an orthogonal experimental method and scanning electron microscopy (SEM). During the preparation experiments with the contaminated materials, both quartz glass and ceramics reached peak activity concentration levels at 4 h of adsorption (contamination) by using immersion; the decontamination factor (DF) was selected as the test index for the decontamination experiments.

View Article and Find Full Text PDF

The present research reports the synthesis of poly-[ethylene oxide]-based composite films (500 μm) containing metal nanoparticles (NPs) [Ag ( ∼ 6 nm), Cu ( ∼ 25 nm), and Fe ( ∼ 35 nm)] as the mobile phase. The novelty of the study is in the corroboration of a plausible mechanism for the generation of metal NPs through green synthesis using herbal extracts of (Tea) and (Neem). Density functional theory (DFT) is used to optimize the phytoreductants present in both biosources, wherein the reducing and/or stabilizing functional entities are primarily hydroxyl groups (-OH).

View Article and Find Full Text PDF