98%
921
2 minutes
20
The carbonization of iron is a very important early phenomenon in the field of heterogeneous catalysis and the petrochemical industry, but the mechanism is still controversial. In this work, the carbonization mechanism and carbonization structure of iron nanoparticles by different carbon sources (CH, CH, CH, CH) were systematically investigated using the reactive molecular dynamics method. The results show that saturated alkanes are dehydrogenated while adsorbed, but unsaturated olefins and alkynes undergo bond-breaking while adsorbed. The C-H bond is more likely to break than the C-C bond. Hydrocarbons with high carbon content have a strong ability to carbonize Fe nanoparticles under the same conditions. For CH and CH, the C atoms generated from dissociation form a large number of long carbon chains intertwined with branched chains and multiple carbon rings. The C2 species formed by CH after complete dehydrogenation diffuse rapidly to the interior of the nanoparticles, releasing the surface active sites and accelerating the carbonization process. Carbon-rich iron carbides (FeC) with different Fe/C ratios were obtained by carbonization with different carbon sources. In addition, the Fe(110) surface exhibits the strongest carburizing ability. These findings provide systematic insights into the initial stages of metal Fe carburization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp01991d | DOI Listing |
Mikrochim Acta
September 2025
Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China.
Iron-cerium co-doped carbon dots (Fe,Ce-CDs) were synthesized by one-step hydrothermal method using tartaric acid and L-tryptophan as ligands. Fe,Ce-CDs shows excellent peroxidase-like (POD) activity and nitrite (NO) can promote the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to its blue oxidation product (oxTMB) due to the formation of ∙NO free radical. NO further react with oxTMB to form a yellow color via diazotization resulting in the absorbance Change at 450 nm.
View Article and Find Full Text PDFNature
September 2025
Los Alamos National Laboratory, Los Alamos, NM, USA.
The Perseverance rover has explored and sampled igneous and sedimentary rocks within Jezero Crater to characterize early Martian geological processes and habitability and search for potential biosignatures. Upon entering Neretva Vallis, on Jezero Crater's western edge, Perseverance investigated distinctive mudstone and conglomerate outcrops of the Bright Angel formation. Here we report a detailed geological, petrographic and geochemical survey of these rocks and show that organic-carbon-bearing mudstones in the Bright Angel formation contain submillimetre-scale nodules and millimetre-scale reaction fronts enriched in ferrous iron phosphate and sulfide minerals, likely vivianite and greigite, respectively.
View Article and Find Full Text PDFBioresour Technol
September 2025
Research Division for Water Environmental Science and Engineering, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. Electronic address:
Constructed wetlands (CWs) treating nitrate-rich wastewater often face incomplete denitrification and elevated NO emissions due to insufficient electron donors. Pyrrhotite as a CW substrate demonstrated potential for enhancing autotrophic denitrification through coupled sulfur and iron biological oxidation. However, the impact of pyrrhotite layer positioning on regulating NO emissions and underlying mechanisms remains unclear.
View Article and Find Full Text PDFJ Environ Manage
September 2025
College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, 611130, China. Electronic address:
While organic manure application effectively increases soil organic carbon (SOC) content, it may elevate greenhouse gas emissions. Crop straw, a widely available agricultural residue, enhances SOC through gradual decomposition. The effect of organic manure combined with crop straw on the organic carbon components of paddy soil is still unclear.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
School of Chemical Engineering, State University of Campinas-Universidade Estadual de Campinas, Albert Einstein Av., 500, Campinas, SP, 13083-852, Brazil.
Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.
View Article and Find Full Text PDF