Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant root traits play a crucial role in resource acquisition and crop performance when soil nutrient availability is low. However, the respective trait responses are complex, particularly at the field scale, and poorly understood due to difficulties in root phenotyping monitoring, inaccurate sampling, and environmental conditions. Here, we conducted a systematic review and meta-analysis of 50 field studies to identify the effects of nitrogen (N), phosphorous (P), or potassium (K) deficiencies on the root systems of common crops. Root length and biomass were generally reduced, while root length per shoot biomass was enhanced under N and P deficiency. Root length decreased by 9% under N deficiency and by 14% under P deficiency, while root biomass was reduced by 7% in N-deficient and by 25% in P-deficient soils. Root length per shoot biomass increased by 33% in N deficient and 51% in P deficient soils. The root-to-shoot ratio was often enhanced (44%) under N-poor conditions, but no consistent response of the root-to-shoot ratio to P-deficiency was found. Only a few K-deficiency studies suited our approach and, in those cases, no differences in morphological traits were reported. We encountered the following drawbacks when performing this analysis: limited number of root traits investigated at field scale, differences in the timing and severity of nutrient deficiencies, missing data (e.g., soil nutrient status and time of stress), and the impact of other conditions in the field. Nevertheless, our analysis indicates that, in general, nutrient deficiencies increased the root-length-to-shoot-biomass ratios of crops, with impacts decreasing in the order deficient P > deficient N > deficient K. Our review resolved inconsistencies that were often found in the individual field experiments, and led to a better understanding of the physiological mechanisms underlying root plasticity in fields with low nutrient availability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846339PMC
http://dx.doi.org/10.3389/fpls.2022.1067498DOI Listing

Publication Analysis

Top Keywords

root length
16
root-to-shoot ratio
12
root
11
root traits
8
soil nutrient
8
nutrient availability
8
field scale
8
length shoot
8
shoot biomass
8
deficiency root
8

Similar Publications

Optimizing maize late wilt disease management: A comparative assessment of bacterial biocontrol and Azoxystrobin alone and in combination.

Pestic Biochem Physiol

November 2025

Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.

Maize (Zea mays L.) is one of the world's most widely cultivated and economically important cereal crop, serving as a staple food and feed source in over 170 countries. However, its global productivity is threatened by late wilt disease (LWD), a disease caused by Magnaporthiopsis maydis, that spreads through soil and seeds and can cause severe yield losses.

View Article and Find Full Text PDF

Objective: To assess the cost-effectiveness of silver diamine fluoride (SDF) relative to sodium fluoride (NaF) and traditional resin-modified glass ionomer cements (RMGIC) restorations for the management of root caries in older adults aged 60 and above.

Methods: A Markov model design was chosen and two models were constructed: 1) Clinic-based model - with access to dental facility that allows for placement of traditional restorations, 2) Community-based model - without access to dental facility due to mobility, lack of executive function, or financial barriers. Modelling was done over a 10-year time horizon with a cycle length of one year.

View Article and Find Full Text PDF

Introduction: Wheat is one of the three major cereal crops in the world and is susceptible to the effects of drought stress. Rhizosphere microorganisms can affect plant growth by altering nutrient absorption and resistance to stress. Studying the plant-microbe interaction under drought stress to reveal the impact of soil microorganisms on plant growth in dry land has important scientific significance.

View Article and Find Full Text PDF

Radiological Comparison of Piezosurgery and Classical Osteotomies in Rhinoplasty.

Aesthetic Plast Surg

September 2025

Department of Otorhinolaryngology, Faculty of Medicine, Kırıkkale University, 71450, Yahşihan, Kırıkkale, Turkey.

Objective: The aim of this study is to compare the radiological measurements of patients who underwent rhinoplasty using a piezo device with those of patients who underwent rhinoplasty using a classical osteotome.

Methods: A total of 60 patients were included in the study: 30 rhinoplasty patients who underwent piezosurgical osteotomy and 30 who underwent classical osteotomy. Preoperative and postoperative functional and aesthetic outcomes were compared using NOSE and ROE scores.

View Article and Find Full Text PDF

The WRKY Transcription Factor SbWRKY51 Positively Regulates Salt Tolerance of Sorghum.

Plant Sci

September 2025

Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China. Electronic address:

Salt stress is one of the main abiotic stresses that affects plant growth and development, as well as crop yield. A large number of studies have reported that the WRKY gene family plays significant roles in the plant responses to salt stress, but the underlying mechanisms remain largely unknown, and research on WRKY proteins in sorghum is also limited. In this study, we identified the sorghum gene SbWRKY51, which encodes a group II WRKY transcription factor.

View Article and Find Full Text PDF