Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article presents the results regarding a systematic literature review procedure on digital twins applied to precision agriculture. In particular, research and development activities aimed at the use of digital twins, in the context of predictive control, with the purpose of improving soil quality. This study was carried out through an exhaustive search of scientific literature on five different databases. A total of 158 articles were extracted as a result of this search. After a first screening process, only 11 articles were considered to be aligned with the current topic. Subsequently, these articles were categorised to extract all relevant information, using the preferred reporting items for systematic reviews and meta-analyses methods. Based on the obtained results, there are two main conclusions to draw: First, when compared with industrial processes, there is only a very slight rising trend regarding the use of digital twins in agriculture. Second, within the time frame in which this work was carried out, it was not possible to find any published paper on the use of digital twins for soil quality improvement within a model predictive control context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865832PMC
http://dx.doi.org/10.3390/s23021007DOI Listing

Publication Analysis

Top Keywords

digital twins
16
soil quality
12
systematic literature
8
literature review
8
predictive control
8
digital
5
digital twin
4
twin paradigm
4
paradigm applied
4
applied soil
4

Similar Publications

Computational modeling and simulation in oncology.

Clin Transl Med

September 2025

Department of Computer Science and Biomedical Engineering, Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria.

Computational modeling and simulation are playing an increasingly important role in oncology, bridging biological research, data science and clinical practice to better understand cancer complexity and inform therapeutic development. This special issue presents recent advances in multiscale modeling, artificial intelligence-driven systems, digital twins, and in silico trials, illustrating the evolving potential of computational tools to support innovation from bench to bedside. Together, these contributions outline a future in which precision medicine, adaptive therapies and personalized diagnostics are guided by integrative and predictive modeling approaches.

View Article and Find Full Text PDF

Remote training of a reservoir computer via digital twins.

Chaos

September 2025

Department of Information Physics and Computing, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

The increasing energy consumption required for information processing has become a significant challenge, leading to growing interest in optical and optoelectronic reservoir computing as a more efficient alternative. Trained reservoir computers are especially suited for low-energy applications near the edge. However, the computational cost of training the reservoir output weights, particularly due to matrix operations, adds potentially unwanted complexity to the architecture.

View Article and Find Full Text PDF

Background: Photon-counting computed tomography (CT) bears promise to substantially improve spectral and spatial resolution. One reason for the relatively slow evolution of photon-counting detectors in CT-the technology has been used in nuclear medicine and planar radiology for decades-is pulse pileup, that is, the random staggering of pulses, resulting in count loss and spectral distortion, which in turn cause image bias and reduced contrast-to-noise ratio (CNR). The deterministic effects of pileup can be mitigated with a pileup-correction algorithm, but the loss of CNR cannot be recovered, and must be minimized by hardware design.

View Article and Find Full Text PDF