98%
921
2 minutes
20
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862173 | PMC |
http://dx.doi.org/10.3390/ijms24021639 | DOI Listing |
Mol Ther Nucleic Acids
September 2025
Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA.
Parkinson's disease (PD) is a debilitating neurodegenerative condition. Synaptic dysfunctions are associated with the onset and progressive neurodegeneration exhibited in PD. Healthy, active synapses are a prerequisite for non-pathological neurotransmission.
View Article and Find Full Text PDFNeurobiol Dis
September 2025
University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA. Electronic address:
Amongst the major histopathological hallmarks in Alzheimer's disease are intracellular neurofibrillary tangles consisting of hyperphosphorylated and aggregated Tau, synaptic dysfunction, and synapse loss. We have previously shown evidence of synaptic mitochondrial dysfunction in a mouse model of Tauopathy that overexpresses human Tau (hTau). Here, we questioned whether the levels or activity of Parkin, an E3 ubiquitin ligase involved in mitophagy, can influence Tau-induced synaptic mitochondrial dysfunction.
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Taihe Hospital of Traditional Chinese Medicine, Anhui University of Traditional Chinese Medicine, Fuyang, 236607, Anhui, China.
The therapeutic mechanisms of Shenwu Yizhi Capsule (SWYZC), a widely used treatment for vascular dementia (VD), remain unclear. This study integrated network pharmacology and experimental methods to elucidate the effects and mechanisms of SWYZC on cognitive function in VD rats. A VD model was established via bilateral common carotid artery occlusion (2-VO).
View Article and Find Full Text PDFSci Adv
September 2025
Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA.
Movement is executed through balanced excitation-inhibition in spinal motor circuits. Short-term perturbations in one type of neurotransmission are homeostatically counteracted by the opposing type, but prolonged excitation-inhibition imbalance causes dysfunction at both single neuron and circuit levels. However, whether dysfunction in one or both types of neurotransmission leads to pathogenicity in neurodegenerative diseases characterized by select synaptic deficits is not known.
View Article and Find Full Text PDFZhonghua Nan Ke Xue
August 2025
Department of Urology, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, China.
Objective: To investigate the pharmacological mechanism of Compound Xuanju Capsule in the treatment of erectile dysfunction (ED) by using network pharmacology and molecular docking technology.
Methods: The active ingredients and targets of Compound Xuanju Capsule were screened using Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP). TTD, OMIM, DrugBank and GeneCards databases were used to obtain genes related to ED, and the union of the results was taken as the disease genes of ED.