Proof-of-Concept Method to Study Uncharacterized Methyltransferases Using PRDM15.

Int J Mol Sci

Department of Clinical Sciences, Lund University, P.O. Box 50332, SE-202 13 Malmö, Sweden.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The PRDM family of methyltransferases has been implicated in cellular proliferation and differentiation and is deregulated in human diseases, most notably in cancer. PRDMs are related to the SET domain family of methyltransferases; however, from the 19 PRDMs only a few PRDMs with defined enzymatic activities are known. PRDM15 is an uncharacterized transcriptional regulator, with significant structural disorder and lack of defined small-molecule binding pockets. Many aspects of PRDM15 are yet unknown, including its structure, substrates, reaction mechanism, and its methylation profile. Here, we employ a series of computational approaches for an exploratory investigation of its potential substrates and reaction mechanism. Using the knowledge of PRDM9 and current knowledge of PRDM15 as basis, we tried to identify genuine substrates of PRDM15. We start from histone-based peptides and learn that the native substrates of PRDM15 may be non-histone proteins. In the future, a combination of sequence-based approaches and signature motif analysis may provide new leads. In summary, our results provide new information about the uncharacterized methyltransferase, PRDM15.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861158PMC
http://dx.doi.org/10.3390/ijms24021327DOI Listing

Publication Analysis

Top Keywords

family methyltransferases
8
substrates reaction
8
reaction mechanism
8
substrates prdm15
8
prdm15
7
proof-of-concept method
4
method study
4
study uncharacterized
4
uncharacterized methyltransferases
4
methyltransferases prdm15
4

Similar Publications

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Heat shock protein family A member 4-like (HSPA4L) has been shown to be overexpressed in osteoarthritis (OA) patients, but its role in OA process still unknown. Chondrocytes were stimulated with interleukin-1β (IL-1β) to mimic OA cell model in vitro, and rat was injected with monosodium iodoacetate (MIA) to construct OA rat model in vivo. The expression of HSPA4L, methyltransferase-like 3 (METTL3) and extracellular matrix (ECM)-related markers was examined by qRT-PCR or western blot.

View Article and Find Full Text PDF

Post-transcriptional RNA modifications, such as N6-methyladenosine (m6A) methylation and adenosine to inosine (A-to-I) editing, are critical regulators of hematopoietic stem cell (HSC) self-renewal and differentiation, yet their precise contributions to malignant transformation are not fully elucidated. In this study, we uncovered the epitranscriptomic landscape caused by knockdown of genes from the methyltransferase (METTL)-family in hematopoietic stem and progenitor cells (HSPCs). We identified both converging and distinct roles of METTL3 and METTL14, known members of the m6A writer complex, as well as orphan gene METTL13.

View Article and Find Full Text PDF

Saline-alkali soil poses a severe threat to the cultivation and yield of soybean, which is an important oilseed and staple crop. As a key metabolic intermediate, S-adenosyl-L-methionine (SAM) and its associated methyltransferases (SAMMTs) play crucial but poorly understood roles in plant stress responses. This study investigated the expression of SAM-depend methyltransferase (SAMMt) family in soybean.

View Article and Find Full Text PDF

Background: In Bangladesh, > 50 million individuals are chronically exposed to inorganic arsenic (iAs) through drinking water, increasing risk for cancer and other iAs-related diseases. Previous studies show that individuals' ability to metabolize and eliminate iAs, and their risk of toxicity, is influenced by genetic variation in the AS3MT and FTCD gene regions.

Methods: To identify additional loci influencing arsenic metabolism, we used data from Bangladeshi individuals to conduct genome-wide association analyses of the relative abundances of arsenic species measured in both urine (n = 6,540) and blood (n = 976).

View Article and Find Full Text PDF