98%
921
2 minutes
20
w-Projection is a wide-field imaging technique that is widely used in radio synthesis arrays. Processing the wide-field big data generated by the future Square Kilometre Array (SKA) will require significant updates to current methods to significantly reduce the time consumed on data processing. Data loading and gridding are found to be two major time-consuming tasks in w-projection. In this paper, we investigate two parallel methods of accelerating w-projection processing on multiple nodes: the hybrid Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) method based on multicore Central Processing Units (CPUs) and the hybrid MPI and Compute Unified Device Architecture (CUDA) method based on Graphics Processing Units (GPUs). Both methods are successfully employed and operated in various computational environments, confirming their robustness. The experimental results show that the total runtime of both MPI + OpenMP and MPI + CUDA methods is significantly shorter than that of single-thread processing. MPI + CUDA generally shows faster performance when running on multiple nodes than MPI + OpenMP, especially on large numbers of nodes. The single-precision GPU-based processing yields faster computation than the double-precision processing; while the single- and double-precision CPU-based processing shows consistent computational performance. The gridding time remarkably increases when the support size of the convolution kernel is larger than 8 and the image size is larger than 2,048 pixels. The present research offers useful guidance for developing SKA imaging pipelines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2019.04.004 | DOI Listing |
Wounds
August 2025
Department of Day Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorder, Chongqing, China; China International Science and Technology Coopera
Background: Current management of pediatric cutaneous abscesses involves either spontaneous healing by secondary intention or suturing through tertiary intention, which are often lengthy processes that cause discomfort and distress among children. As it is noninvasive and simple, a novel zipper device is widely used for the primary wound closure of surgical incisions.
Objective: To describe the effectiveness of novel zipper device use for pediatric cutaneous abscess wound closure in an outpatient context.
Wounds
August 2025
Solventum, Maplewood, MN, USA.
Background: Initially limited to inpatient use, negative pressure wound therapy (NPWT) is now frequently used in community settings. However, complexities in wound management step-down strategies in the United Kingdom, including regional variations in referral processes, lack of consensus on funding criteria, and limited availability of NPWT units, have led to extended hospital length of stay (LOS) for patients ready for discharge but still needing NPWT. Single-use NPWT (sNPWT) can serve as a bridge between hospital and community NPWT.
View Article and Find Full Text PDFNutr Clin Pract
September 2025
Centre for Health Services Research, University of Queensland, Brisbane, Queensland, Australia.
Theoretical approaches can help to plan, guide, and evaluate implementation projects that target real-world practice problems. This paper provides an overview of the integrated Promoting Action on Research Implementation in Health Services (i-PARIHS) framework and summarizes its use in nutrition and dietetics research and practice. A narrative summary of its use was compiled from the published literature based on citations from two key reference sources of the i-PARIHS framework.
View Article and Find Full Text PDFBMC Med Educ
September 2025
Medical Didactics and Education Research, DEMEDA, Faculty of Medicine, University of Augsburg, Augsburg, Germany.