Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Triple-negative breast cancer (TNBC) is a rare cancer, characterized by high metastatic potential and poor prognosis, and has limited treatment options. The current standard of care in nonmetastatic settings is neoadjuvant chemotherapy (NACT), but treatment efficacy varies substantially across patients. This heterogeneity is still poorly understood, partly due to the paucity of curated TNBC data. Here we investigate the use of machine learning (ML) leveraging whole-slide images and clinical information to predict, at diagnosis, the histological response to NACT for early TNBC women patients. To overcome the biases of small-scale studies while respecting data privacy, we conducted a multicentric TNBC study using federated learning, in which patient data remain secured behind hospitals' firewalls. We show that local ML models relying on whole-slide images can predict response to NACT but that collaborative training of ML models further improves performance, on par with the best current approaches in which ML models are trained using time-consuming expert annotations. Our ML model is interpretable and is sensitive to specific histological patterns. This proof of concept study, in which federated learning is applied to real-world datasets, paves the way for future biomarker discovery using unprecedentedly large datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-022-02155-wDOI Listing

Publication Analysis

Top Keywords

federated learning
12
histological response
8
neoadjuvant chemotherapy
8
triple-negative breast
8
breast cancer
8
whole-slide images
8
response nact
8
study federated
8
learning predicting
4
predicting histological
4

Similar Publications

Learning from history for personalized federated learning.

Neural Netw

September 2025

College of Information Science, North China University of Technology, Beijing, China. Electronic address:

Personalized Federated Learning (pFL) has received extensive attentions, due to its ability to effectively process non-IID data distributed among different clients. However, most of the existing pFL methods focus on the collaboration between global and local models to enrich the personalization process, but ignoring a lot of valuable historical information, which represents the unique learning trajectory of each client. In this paper, we propose a pFL method called FedLFH, which introduces a tracking variable that allows each client to preserve historical information to facilitate personalization.

View Article and Find Full Text PDF

Applications of Federated Large Language Model for Adverse Drug Reactions Prediction: Scoping Review.

J Med Internet Res

September 2025

Department of Information Systems and Cybersecurity, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, United States, 1 (210) 458-6300.

Background: Adverse drug reactions (ADR) present significant challenges in health care, where early prevention is vital for effective treatment and patient safety. Traditional supervised learning methods struggle to address heterogeneous health care data due to their unstructured nature, regulatory constraints, and restricted access to sensitive personal identifiable information.

Objective: This review aims to explore the potential of federated learning (FL) combined with natural language processing and large language models (LLMs) to enhance ADR prediction.

View Article and Find Full Text PDF

Protein kinases are central regulators of cell signaling and play pivotal roles in a wide array of diseases, most notably cancer and autoimmune disorders. The clinical success of kinase inhibitors-such as imatinib and osimertinib-has firmly established kinases as valuable drug targets. However, the development of selective, potent inhibitors remains challenging due to the conserved nature of the ATP-binding site, off-target effects, resistance mutations, and patient-specific variability.

View Article and Find Full Text PDF

Large-scale genomics data combined with Electronic Health Records (EHRs) illuminate the path towards personalized disease management and enhanced medical interventions. However, the absence of "gold standard" disease labels makes the development of machine learning models a challenging task. Additionally, imbalances in demographic representation within datasets compromise the development of unbiased healthcare solutions.

View Article and Find Full Text PDF

Early diagnosis of Parkinson's disease (PD) is crucial for timely treatment and disease management. Recent studies link PD to impaired facial muscle control, manifesting as "masked face" symptoms, offering a novel diagnostic approach through facial expression analysis. However, data privacy concerns and legal restrictions have resulted in significant "data silos", hindering data sharing and limiting the accuracy and generalizability of existing diagnostic models due to small, localized datasets.

View Article and Find Full Text PDF