Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cellular pool of malonyl-CoA in Escherichia coli is small, which impedes its utility for overproduction of natural products such as phenylpropanoids, polyketides, and flavonoids. In this study, we report the use of a new metabolic pathway to increase the malonyl-CoA concentration as a limiting metabolite in E. coli. For this purpose, the malonate/sodium symporter from Malonomonas rubra, and malonyl-CoA synthetase (MCS) from Bradyrhizobium japonicum were co-expressed in E. coli. This new pathway allows the cell to actively import malonate from the culture medium and to convert malonate and CoA to malonyl-CoA via an ATP-dependent ligation reaction. HPLC analysis confirmed elevated levels of malonyl-CoA and (2S)-naringenin as a malonyl-CoA-dependent metabolite, in E. coli. A 6.8-fold and more than 3.5-fold increase in (2S)-naringenin production were achieved in the engineered host in comparison with non-engineered E. coli and previously reported passive transport MatBMatC pathway, respectively. This observation suggests that using active transporters of malonate not only improves malonyl-CoA-dependent production but also makes it possible to harness low concentrations of malonate in culture media.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-022-00635-5DOI Listing

Publication Analysis

Top Keywords

metabolic pathway
8
escherichia coli
8
metabolite coli
8
malonate culture
8
malonyl-coa
6
coli
6
engineering novel
4
novel metabolic
4
pathway
4
pathway improving
4

Similar Publications

Gut microbiota dysbiosis in people living with HIV who have cancer: novel insights and diagnostic potential.

Front Immunol

September 2025

Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.

Background: People living with HIV(PLWH) are a high-risk population for cancer. We conducted a pioneering study on the gut microbiota of PLWH with various types of cancer, revealing key microbiota.

Methods: We collected stool samples from 54 PLWH who have cancer (PLWH-C), including Kaposi's sarcoma (KS, n=7), lymphoma (L, n=22), lung cancer (LC, n=12), and colorectal cancer (CRC, n=13), 55 PLWH who do not have cancer (PLWH-NC), and 49 people living without HIV (Ctrl).

View Article and Find Full Text PDF

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

Structure and function of the topsoil microbiome in Chinese terrestrial ecosystems.

Front Microbiol

August 2025

State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.

While soil microorganisms underpin terrestrial ecosystem functioning, how their functional potential adapts across environmental gradients remains poorly understood, particularly for ubiquitous taxa. Employing a comprehensive metagenomic approach across China's six major terrestrial ecosystems (41 topsoil samples, 0-20 cm depth), we reveal a counterintuitive pattern: oligotrophic environments (deserts, karst) harbor microbiomes with significantly greater metabolic pathway diversity (KEGG) compared to resource-rich ecosystems. We provide a systematic catalog of key functional genes governing biogeochemical cycles in these soils, identifying: 6 core CAZyme genes essential for soil organic carbon (SOC) decomposition and biosynthesis; 62 nitrogen (N)-cycling genes (KOs) across seven critical enzymatic clusters; 15 sulfur (S)-cycling genes (KOs) within three key enzymatic clusters.

View Article and Find Full Text PDF

Advancements and perspectives on organelle-targeted fluorescent probes for super-resolution SIM imaging.

Chem Sci

September 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China

As a cutting-edge super-resolution imaging technique, structured illumination microscopy (SIM) has been widely used in cell biology research, especially in the analysis of subcellular organelles and monitoring of their dynamic processes. Through multiple illumination and reconstruction processes, SIM breaks through the resolution limitations of traditional microscopes and can observe the fine structures within cells in real time with nanoscale resolution. This provides strong technical support for in-depth analyses of molecular mechanisms, organelle functions, signaling networks, and metabolic regulatory pathways within cells.

View Article and Find Full Text PDF

Background: (Benth.) Baker is a perennial shrub endemic to the Tibetan Plateau. Its seeds are traditional Tibetan medicine for treating jaundice, hepatitis, purulent tonsillitis, diphtheria, and parasitosis.

View Article and Find Full Text PDF