98%
921
2 minutes
20
Donor-doped TiO-based materials are promising thermoelectrics (TEs) due to their low cost and high stability at elevated temperatures. Herein, high-performance Nb-doped TiO thick films are fabricated by facile and scalable screen-printing techniques. Enhanced TE performance has been achieved by forming high-density crystallographic shear (CS) structures. All films exhibit the same matrix rutile structure but contain different nano-sized defect structures. Typically, in films with low Nb content, high concentrations of oxygen-deficient {121} CS planes are formed, while in films with high Nb content, a high density of twin boundaries are found. Through the use of strongly reducing atmospheres, a novel Al-segregated {210} CS structure is formed in films with higher Nb content. By advanced aberration-corrected scanning transmission electron microscopy techniques, we reveal the nature of the {210} CS structure at the nano-scale. These CS structures contain abundant oxygen vacancies and are believed to enable energy-filtering effects, leading to simultaneous enhancement of both the electrical conductivity and Seebeck coefficients. The optimized films exhibit a maximum power factor of 4.3 × 10 W m K at 673 K, the highest value for TiO-based TE films at elevated temperatures. Our modulation strategy based on microstructure modification provides a novel route for atomic-level defect engineering which should guide the development of other TE materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9906629 | PMC |
http://dx.doi.org/10.1021/acsami.2c16587 | DOI Listing |
JMIR Hum Factors
September 2025
Seidenberg School of Computer Science and Information Systems, Pace University, New York City, NY, United States.
Background: As information and communication technologies and artificial intelligence (AI) become deeply integrated into daily life, the focus on users' digital well-being has grown across academic and industrial fields. However, fragmented perspectives and approaches to digital well-being in AI-powered systems hinder a holistic understanding, leaving researchers and practitioners struggling to design truly human-centered AI systems.
Objective: This paper aims to address the fragmentation by synthesizing diverse perspectives and approaches to digital well-being through a systematic literature review.
Small
September 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Quasi-1D van der Waals materials have emerged as promising candidates for flexible electronic and thermoelectric applications due to their intrinsic anisotropy, narrow band gaps, and mechanical flexibility. Herein, MXSe (M = Nb, Ta, X = Pd, Pt) nanowires are studied to understand the bonding-directed growth mechanism. Bond valence sums and binding energy analyses reveal that weak X2-Se2 interactions perpendicular to the c-axis facilitate anisotropic growth.
View Article and Find Full Text PDFSmall
September 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
This study presents a novel carbazole derivative functionalized with hydroxy diphosphonic acid groups (HDPACz) as an efficient annealing-free hole transport layer (HTL) through strong bidentate anchoring to indium tin oxide (ITO). Compared to conventional mono-phosphonic acid counterparts, HDPACz demonstrates superior ITO surface coverage and interfacial dipole, effectively modulating the work function of ITO. Theoretical calculations reveal enhanced adsorption energy (-3.
View Article and Find Full Text PDFFront Oncol
August 2025
Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Background: Low-grade endometrial stromal sarcoma (LG-ESS) is a rare malignant tumor of the female reproductive system with atypical clinical symptoms and slow progression.
Case: A 44-year-old female with a history of intermittent severe dysmenorrhea, previous laparoscopic myomectomy, and uterine artery embolization (UAE) presented with rapidly enlarging pelvic masses. Imaging revealed uterine masses suggestive of leiomyomas, although an adnexal origin could not be excluded.
Cureus
August 2025
Department of Paediatrics, All India Institute of Medical Sciences, Raebareli, Raebareli, IND.
Introduction: Early recognition of pediatric sepsis is crucial for timely intervention, prevention of mortality, and improving long-term outcomes in children. However, the lack of advanced diagnostics in resource-limited settings poses a significant challenge to early diagnosis and intervention. Complete blood count (CBC) parameters are routinely performed, cost-effective, and readily available, yet their diagnostic utility in pediatric sepsis remains underutilized.
View Article and Find Full Text PDF