Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chest X-rays are the most economically viable diagnostic imaging test for active pulmonary tuberculosis screening despite the high sensitivity and low specificity when interpreted by clinicians or radiologists. Computer aided detection (CAD) algorithms, especially convolution based deep learning architecture, have been proposed to facilitate the automation of radiography imaging modalities. Deep learning algorithms have found success in classifying various abnormalities in lung using chest X-ray. We fine-tuned, validated and tested EfficientNetB4 architecture and utilized the transfer learning methodology for multilabel approach to detect lung zone wise and image wise manifestations of active pulmonary tuberculosis using chest X-ray. We used Area Under Receiver Operating Characteristic (AUC), sensitivity and specificity along with 95% confidence interval as model evaluation metrics. We also utilized the visualisation capabilities of convolutional neural networks (CNN), Gradient-weighted Class Activation Mapping (Grad-CAM) as post-hoc attention method to investigate the model and visualisation of Tuberculosis abnormalities and discuss them from radiological perspectives. EfficientNetB4 trained network achieved remarkable AUC, sensitivity and specificity of various pulmonary tuberculosis manifestations in intramural test set and external test set from different geographical region. The grad-CAM visualisations and their ability to localize the abnormalities can aid the clinicians at primary care settings for screening and triaging of tuberculosis where resources are constrained or overburdened.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845381PMC
http://dx.doi.org/10.1038/s41598-023-28079-0DOI Listing

Publication Analysis

Top Keywords

deep learning
12
pulmonary tuberculosis
12
wise manifestations
8
chest x-rays
8
active pulmonary
8
chest x-ray
8
auc sensitivity
8
sensitivity specificity
8
test set
8
tuberculosis
6

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Use of artificial intelligence for classification of fractures around the elbow in adults according to the 2018 AO/OTA classification system.

BMC Musculoskelet Disord

September 2025

Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.

Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.

Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF

Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.

View Article and Find Full Text PDF