Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant-soil feedbacks (PSFs) are an important mechanism of species coexistence in forest communities. However, evidence remains limited for how light availability regulates PSFs in species with different shade tolerance via changes in plant-microbial interactions. Here we tested in a glasshouse experiment how PSFs changed as a function of light availability and tree shade tolerance. Soil bacterial and fungal communities were profiled using the 16S rRNA and ITS2 gene sequencing, respectively. Under low light, individual PSFs were positively related to shade tolerance, while the least shade-tolerant species produced the most positive PSFs under high light. Pairwise PSFs between species with contrasting shade tolerance were strongly positive under high light but negative under low light, thereby promoting the dominance of less shade-tolerant species in forest gaps and species coexistence under closed canopy, respectively. Under high light, PSFs were related to soil microbial composition and diversity, with the relative abundance of arbuscular mycorrhizal fungi being the primary driver of PSFs. Under low light, none of soil microbial properties were significantly related to PSFs. These findings indicate PSFs and plant shade tolerance interact to promote species coexistence and improve our understanding of how soil microbes contribute to variation in PSFs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.18737DOI Listing

Publication Analysis

Top Keywords

shade tolerance
24
light availability
12
species coexistence
12
low light
12
high light
12
psfs
11
light
9
plant shade
8
plant-microbial interactions
8
psfs species
8

Similar Publications

Transcriptome analysis of shade-induced growth and photosynthetic responses in soybean cultivars.

PLoS One

September 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRl). Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Bei

Shade stress alters soybean growth through transcriptomic changes and adaptive responses that optimize light capture and utilization, regulated by a phytohormonal network. This study examined the physiological, morphological, and molecular responses of Guru (shade-tolerant) and Heinong 53 (shade-sensitive) soybean cultivars under 0% (control), 30%, and 70% shade. Results revealed morphological responses where Heinong 53 exhibited greater plant height (52.

View Article and Find Full Text PDF

Background: Solar radiation is a primary constraint in silvoarable agroforestry, with yield losses near the trees well documented in temperate climates. However, genetic variability for shade tolerance remains largely unexplored. This 2-year field trial investigated the impact of artificial shading - using nets that reduced photosynthetically active radiation (PAR) by moderate (-30%) and severe (-50%) levels relative to full sun - on the morpho-physiology and yield of common wheat.

View Article and Find Full Text PDF

Forest restoration is an essential tool for conserving biodiversity in tropical regions; yet, restoration outcomes in the Afrotropics remain largely understudied. Here, we investigated how the forest structure, tree diversity, community, life-history traits and habitat associations recovered over three decades of active restoration in an East African rainforest in Uganda. The vegetation surveys were initially conducted in 2013 and repeated in 2021.

View Article and Find Full Text PDF

In the future, we will have to deal with periods of drought, storms and severe climate change impacts. Insufficient green spaces worsens these challenges in urban landscapes. Rising urban populations and ecosystem degradation demand innovative solutions to enhance resilience of our cities.

View Article and Find Full Text PDF

Background: In major soybean-growing regions worldwide, vertical (three-dimensional) planting systems are widely adopted. Achieving precise phenotyping of individual soybean plants is crucial for breeding shade-tolerant cultivars and optimizing high yields. However, canopy shading from taller crops severely restricts the acquisition of phenotypic information from the lower-growing soybeans, and conventional phenotyping platforms struggle to meet the demands of such complex planting structures.

View Article and Find Full Text PDF