A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

4mCBERT: A computing tool for the identification of DNA N4-methylcytosine sites by sequence- and chemical-derived information based on ensemble learning strategies. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

N4-methylcytosine (4mC) is an important DNA chemical modification pattern which is a new methylation modification discovered in recent years and plays critical roles in gene expression regulation, defense against invading genetic elements, genomic imprinting, and so on. Identifying 4mC site from DNA sequence segment contributes to discovering more novel modification patterns. In this paper, we present a model called 4mCBERT that encodes DNA sequence segments by sequence characteristics including one-hot, electron-ion interaction pseudopotential, nucleotide chemical property, word2vec and chemical information containing physicochemical properties (PCP), chemical bidirectional encoder representations from transformers (chemical BERT) and employs ensemble learning framework to develop a prediction model. PCP and chemical BERT features are firstly constructed and applied to predict 4mC sites and show positive contributions to identifying 4mC. For the Matthew's Correlation Coefficient, 4mCBERT significantly outperformed other state-of-the-art models on six independent benchmark datasets including A. thaliana, C. elegans, D. melanogaster, E. coli, G. Pickering, and G. subterraneous by 4.32 % to 24.39 %, 2.52 % to 31.65 %, 2 % to 16.49 %, 6.63 % to 35.15, 8.59 % to 61.85 %, and 8.45 % to 34.45 %. Moreover, 4mCBERT is designed to allow users to predict 4mC sites and retrain 4mC prediction models. In brief, 4mCBERT shows higher performance on six benchmark datasets by incorporating sequence- and chemical-driven information and is available at http://cczubio.top/4mCBERT and https://github.com/abcair/4mCBERT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123180DOI Listing

Publication Analysis

Top Keywords

ensemble learning
8
identifying 4mc
8
dna sequence
8
pcp chemical
8
chemical bert
8
predict 4mc
8
4mc sites
8
benchmark datasets
8
4mc
6
chemical
6

Similar Publications