Optical Tissue Phantoms for Quantitative Evaluation of Surgical Imaging Devices.

Adv Photonics Res

Gordon Center for Medical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optical tissue phantoms (OTPs) have been extensively applied to the evaluation of imaging systems and surgical training. Due to their human tissue-mimicking characteristics, OTPs can provide accurate optical feedback on the performance of image-guided surgical instruments, simulating the biological sizes and shapes of human organs, and preserving similar haptic responses of original tissues. This review summarizes the essential components of OTPs (i.e., matrix, scattering and absorbing agents, and fluorophores) and the various manufacturing methods currently used to create suitable tissue-mimicking phantoms. As photobleaching is a major challenge in OTP fabrication and its feedback accuracy, phantom photostability and how the photobleaching phenomenon can affect their optical properties are discussed. Consequently, the need for novel photostable OTPs for the quantitative evaluation of surgical imaging devices is emphasized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838008PMC
http://dx.doi.org/10.1002/adpr.202200194DOI Listing

Publication Analysis

Top Keywords

optical tissue
8
tissue phantoms
8
quantitative evaluation
8
evaluation surgical
8
surgical imaging
8
imaging devices
8
optical
4
phantoms quantitative
4
surgical
4
devices optical
4

Similar Publications

Mn-doped carbon dots-based fluorescent-colorimetric dual-mode probes for selective and sensitive detection of Cr(VI) ions and l-ascorbic acid via smartphone-integrated analytical platform.

Anal Chim Acta

November 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:

Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.

View Article and Find Full Text PDF

Background: Lung ischemia-reperfusion injury (LIRI) is a pathological condition characterized by aggravated oxidative-inflammatory tissue damage that occurs upon blood flow restoration after ischemia. LIRI can lead to severe complications, including primary graft dysfunction in lung transplants and multi-organ failure. However, current treatments remain limited.

View Article and Find Full Text PDF

Age-related eye diseases (AREDs) are the leading cause of visual impairment in the elderly, affecting the structure of the anterior and posterior segments of the eye, significantly reducing the quality of life of patients, and even leading to irreversible blindness. Typical AREDs include age-related cataract (ARC), dry eye disease (DED), age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), the global prevalence of which continues to rise, becoming a serious public health concern. SIRT1 is an NAD + dependent deacetylase, which plays an important physiological regulatory role in ocular tissues, mainly affecting gene expression and various cellular processes by regulating the acetylation status of substrate proteins.

View Article and Find Full Text PDF

The Anatolian ground squirrel (Spermophilus xanthoprymnus) offers a valuable model for investigating neuroadaptive processes in the retina during hibernation. This study aimed to assess the expression of vesicular glutamate transporter 1 (VGLUT1), glutamic acid decarboxylase (GAD) isoforms GAD65 and GAD67, and microtubule-associated protein 2 (MAP2) in the retina during pre-hibernation and hibernation states. Retinal tissues were analyzed using immunohistochemistry and densitometric quantification.

View Article and Find Full Text PDF

High Efficiency Labeling of nerve Fibers in cleared tissue for light-sheet microscopy.

J Neurosci Methods

September 2025

European Laboratory for Non-linear Spectroscopy, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; National Institute of Optics -National Research Council (CNR-INO), 50125 Sesto Fiorentino, Italy. Electronic address:

Background: Tissue clearing techniques combined with light-sheet fluorescence microscopy (LSFM) enable high-resolution 3D imaging of biological structures without physical sectioning. While widely used in neuroscience to determine brain architecture and connectomics, their application for spinal cord mapping remains more limited, posing challenges for studying demyelinating diseases like multiple sclerosis. Myelin visualization in cleared tissues is particularly difficult due to the lipid-removal nature of most clearing protocols, and alternative immunolabeling approaches failed to reach satisfying results.

View Article and Find Full Text PDF