Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Selenium, a trace element associated with memory impairment and glucose metabolism, mainly exerts its function through selenoproteins. is a selenoprotein located in the endoplasmic reticulum (ER) lumen. Our study demonstrates for the first time that knockout decreases synaptic plasticity and causes memory impairment in 10-month-old mice. In addition, knockout causes hyperglycaemia and disturbs glucose metabolism, which is essential for synapse formation and transmission in the brain. Further research reveals that knockout leads to inhibition of the brain insulin signaling pathway [phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR/p70 S6 kinase pathway], which may impair synaptic plasticity in mice. High-fat diet (HFD) feeding suppresses the brain insulin signaling pathway in knockout mice and leads to earlier onset of cognitive impairment at 5 months of age. In general, our study demonstrates that knockout induces synaptic deficits via the brain insulin signaling pathway, thus leading to cognitive dysfunction in mice. These data strongly suggest that plays a vital role in brain glucose metabolism and contributes substantially to synaptic plasticity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.2c07491 | DOI Listing |