Strain effect on the field-effect sensing property of Si wires.

Phys Chem Chem Phys

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Silicon-based field effect transistor (FET) sensors with high sensitivity are emerging as powerful sensors for detecting chemical/biological species. Strain engineering has been demonstrated as an effective means to improve the performance of Si-based devices. However, the strain effect on the field-effect sensing property of silicon materials has not been studied yet. Here, we investigate the strain effect on the field-effect sensing property of silicon wires by taking humidity sensing as an example. The humidity sensitivity of FET sensors based on silicon wires increases with increasing tensile strain but decreases with increasing compressive strain. The sensitivity is very responsive to strain with an enhancement factor of 67 for tensile strain. Theoretical analysis shows that the sensitivity variation under different strains is mainly attributed to the change in adsorption energy between silicon wires and water molecules. This work indicates that strain engineering can be an effective route to modulate the field-effect sensing property of Si wires for constructing highly sensitive Si-based FET sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp04805aDOI Listing

Publication Analysis

Top Keywords

field-effect sensing
16
sensing property
16
strain field-effect
12
fet sensors
12
silicon wires
12
strain
9
property wires
8
strain engineering
8
property silicon
8
tensile strain
8

Similar Publications

Real-time, multiplexed monitoring of wound infection biomarkers is essential for early detection of infection and inflammation, as well as for evaluating wound healing progression. However, existing biosensing technologies lack the sensitivity, specificity, and integration needed to meet these clinical demands. To address current limitations in wound monitoring, we developed a portable and multimodal sensor system capable of simultaneously detecting uric acid (UA), phenazine-1-carboxylic acid (PCA), interleukin-6 (IL-6), and pH.

View Article and Find Full Text PDF

CRISPR/Cas12a-functionalized silicon nanowires field-effect transistor sensor for ultra-sensitive detection of pathogen nucleic acids.

Biosens Bioelectron

December 2025

State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China. Electronic address:

Rapid, sensitive, and accurate detection of pathogen nucleic acids is critical for ensuring public safety and health. Nevertheless, current methods still encounter significant challenges. Field-effect transistor (FET) biosensors are renowned for high sensitivity, rapid response, and label-free detection.

View Article and Find Full Text PDF

The detection of proteins plays a key role in disease diagnosis and drug development. For this, we numerically investigated a novel microfluidic motor actuated by an induced-charge electro-osmotic (ICEO) whirling flow. An alternating current-flow field effect transistor is engineered to modulate the profiles of ICEO streaming to stimulate and adjust the whirling flow in the circle microfluidic chamber.

View Article and Find Full Text PDF

We present a highly sensitive and selective gas sensor based on an advanced silicon-on-insulator tunnel field-effect transistor (SOI-TFET) architecture, enhanced through the integration of customized conducting polymers. In this design, traditional metal gates are replaced with distinct functional polymers-PPP-TOS/AcCN, PP-TOS/AcCN, PP-FE(CN)/HO, PPP-TCNQ-TOS/AcCN, and PPP-ClO/AcCN-which enable precise molecular recognition and discrimination of various target gases. To further enhance sensitivity, the device employs an oppositely doped source region, significantly improving gate control and promoting stronger band-to-band tunneling.

View Article and Find Full Text PDF

Field-effect transistors (FETs) are an integrated part of various electronic products and play an irreplaceable role in modern-day bioelectronics and biosensors. The electronic performance of FET-based sensors is intrinsically correlated with the choice of the sensing layer, with graphene being one of the most widely employed active semiconductor materials through which charge carriers (i.e.

View Article and Find Full Text PDF