Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Long-term data allow ecologists to assess trajectories of population abundance. Without this context, it is impossible to know whether a taxon is thriving or declining to extinction. For parasites of wildlife, there are few long-term data-a gap that creates an impediment to managing parasite biodiversity and infectious threats in a changing world. We produced a century-scale time series of metazoan parasite abundance and used it to test whether parasitism is changing in Puget Sound, United States, and, if so, why. We performed parasitological dissection of fluid-preserved specimens held in natural history collections for eight fish species collected between 1880 and 2019. We found that parasite taxa using three or more obligately required host species-a group that comprised 52% of the parasite taxa we detected-declined in abundance at a rate of 10.9% per decade, whereas no change in abundance was detected for parasites using one or two obligately required host species. We tested several potential mechanisms for the decline in 3+-host parasites and found that parasite abundance was negatively correlated with sea surface temperature, diminishing at a rate of 38% for every 1 °C increase. Although the temperature effect was strong, it did not explain all variability in parasite burden, suggesting that other factors may also have contributed to the long-term declines we observed. These data document one century of climate-associated parasite decline in Puget Sound-a massive loss of biodiversity, undetected until now.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934024PMC
http://dx.doi.org/10.1073/pnas.2211903120DOI Listing

Publication Analysis

Top Keywords

parasite burden
8
century climate-associated
8
parasite
8
climate-associated parasite
8
parasite decline
8
parasite abundance
8
parasite taxa
8
obligately required
8
required host
8
abundance
5

Similar Publications

Vector-borne parasitic diseases (VBPDs) represent a major global public health concern, with human African trypanosomiasis (HAT), Chagas disease, leishmaniasis, and malaria collectively threatening millions of people, particularly in developing regions. Climate change may further influence their transmission and geographic spread, increasing the global burden. As drug resistance continues to rise, there is an urgent need for novel therapeutic agents to expand treatment options and limit disease progression.

View Article and Find Full Text PDF

Despite the global burden of helminth infections, no human vaccines have yet been licensed against these parasites. This study explored the development and evaluation of mRNA vaccine candidates targeting tetraspanin-2 ( -TSP-2), an antigen currently under evaluation as a protein vaccine. We designed constructs encoding either full-length -TSP-2, or its large extracellular loop (EC2) domain in secretory, membrane-anchored, or cytosolic forms.

View Article and Find Full Text PDF

The escalating cancer burden in Sub-Saharan Africa (SSA), with projected doubling of incidence and mortality by 2040, necessitates innovative, cost-effective strategies for prevention, diagnosis, and treatment. While known infectious triggers like HPV, hepatitis viruses, and account for an estimated 28.7% of cancers in SSA, the full scope of microbially-mediated oncogenesis remains underexplored.

View Article and Find Full Text PDF

Protective immune response in rainbow trout () against the parasitic nematode .

Front Immunol

September 2025

Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.

Introduction: Parasitic nematodes are prevalent in fish populations. The parasites are pathogenic but depress host responses, which limit clearance of the pathogens from the invasion sites. We hypothesized that one of several control strategies, which could augment protection, is immunization of the fish host with parasite antigens prior to live pathogen exposure.

View Article and Find Full Text PDF

Pathogens can alter the phenotype not only of exposed hosts, but also of future generations. Transgenerational immune priming, where parental infection drives reduced susceptibility of offspring, has been particularly well explored, but pathogens can also alter life history traits of offspring. Here, we examined the potential for transgenerational impacts of a microsporidian pathogen, Ordospora pajunii, by experimentally measuring the impact of maternal exposure on offspring fitness in the presence and absence of parasites, and then developing mathematical models that explored the population-level impacts of these transgenerational effects.

View Article and Find Full Text PDF