Publications by authors named "Athos Silva Oliveira"

Despite the global burden of helminth infections, no human vaccines have yet been licensed against these parasites. This study explored the development and evaluation of mRNA vaccine candidates targeting tetraspanin-2 ( -TSP-2), an antigen currently under evaluation as a protein vaccine. We designed constructs encoding either full-length -TSP-2, or its large extracellular loop (EC2) domain in secretory, membrane-anchored, or cytosolic forms.

View Article and Find Full Text PDF

Background: Soil is a reservoir for many parasites that can affect human and animal health, especially in tropical regions where soil-transmitted helminths and protozoa thrive. Understanding how environmental factors influence parasite distribution will provide a basis for relating how climate changes may intensify their impacts, altering parasite habitats and increasing transmission risks. We surveyed soil parasite prevalence, burden, and diversity in several different Peruvian environmental ecologies to catalog current parasite presence and provide a baseline for future surveys.

View Article and Find Full Text PDF

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

The gram-positive bacterium Clostridium thermocellum contains a set of carbohydrate-active enzymes that can potentially be employed to generate high-value-added products from lignocellulose. In this study, the gene expression profiling of C. thermocellum B8 was provided during growth in the presence of sugarcane bagasse and straw as a carbon source in comparison to growth using microcrystalline cellulose.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is a single-stranded positive RNA virus that belongs to the genus and is transmitted to humans by infected and bites. In humans, CHIKV usually causes painful symptoms during acute and chronic stages of infection. Conversely, virus-vector interaction does not disturb the mosquito's fitness, allowing a persistent infection.

View Article and Find Full Text PDF

Forage crops occupy large areas of tropical pastures for cattle feeding in Brazil. The use of stylos (Stylosanthes spp.) in these pastures, which are leguminous shrubs, has increased in the country due to their outstanding nutritional value and for being an efficient and alternative source for nitrogen fixation in the soil.

View Article and Find Full Text PDF

Background: Mayaro virus (MAYV) is responsible for a mosquito-borne tropical disease with clinical symptoms similar to dengue or chikungunya virus fevers. In addition to the recent territorial expansion of MAYV, this virus may be responsible for an increasing number of outbreaks. Currently, no vaccine is available.

View Article and Find Full Text PDF

Tomato chlorotic spot virus (TCSV) and groundnut ringspot virus (GRSV) share several genetic and biological traits. Both of them belong to the genus (family ), which is composed by viruses with tripartite RNA genome that infect plants and are transmitted by thrips (order Thysanoptera). Previous studies have suggested several reassortment events between these two viruses, and some speculated that they may share one of their genomic segments.

View Article and Find Full Text PDF

The Tomato chlorotic spot virus (TCSV) was first reported in the 1980s, having its occurrence limited to Brazil and Argentina. Due to an apparent mild severity in the past, molecular studies concerning TCSV were neglected. However, TCSV has disseminated over the USA and Caribbean countries.

View Article and Find Full Text PDF

The cell-to-cell movement protein (NS) of tomato spotted wilt virus (TSWV) has been recently identified as the effector of the single dominant Sw-5b resistance gene from tomato (Solanum lycopersicum L.). Although most TSWV isolates shows a resistance-inducing (RI) phenotype, regular reports have appeared on the emergence of resistance-breaking (RB) isolates in tomato fields, and suggested a strong association with two point mutations (C118Y and T120N) in the NS protein.

View Article and Find Full Text PDF

Only a limited number of dominant resistance genes acting against plant viruses have been cloned, and further functional studies of these have been almost entirely limited to the resistance genes Rx against Potato virus X (PVX) and N against Tobacco mosaic virus (TMV). Recently, the cell-to-cell movement protein (NS ) of Tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant (Avr) of Sw-5b-mediated resistance, a dominant resistance gene which belongs to the class of SD-CC-NB-LRR (Solanaceae domain-coiled coil-nucleotide-binding-leucine-rich repeat, SD-CNL) resistance genes. On transient expression of the NS protein in tomato and transgenic Nicotiana benthamiana harbouring the Sw-5b gene, a hypersensitive cell death response (HR) is triggered.

View Article and Find Full Text PDF

Although the Sw-5 gene cluster has been cloned, and Sw-5b has been identified as the functional gene copy that confers resistance to Tomato spotted wilt virus (TSWV), its avirulence (Avr) determinant has not been identified to date. Nicotiana tabacum 'SR1' plants transformed with a copy of the Sw-5b gene are immune without producing a clear visual response on challenge with TSWV, whereas it is shown here that N. benthamiana transformed with Sw-5b gives a rapid and conspicuous hypersensitive response (HR).

View Article and Find Full Text PDF

Background: Tospoviruses (Genus Tospovirus, Family Bunyaviridae) are phytopathogens responsible for significant worldwide crop losses. They have a tripartite negative and ambisense RNA genome segments, termed S (Small), M (Medium) and L (Large) RNA. The vector-transmission is mediated by thrips in a circulative-propagative manner.

View Article and Find Full Text PDF

The tospoviral RNA-dependent RNA polymerases (RdRp), or L proteins, perform several conserved functions during virus replication in host cells. In this study, an L segment sequence of 9,040 bp from a new tospovirus (family Bunyaviridae) naturally infecting bean (Phaseolus vulgaris L.) plants was characterized.

View Article and Find Full Text PDF