98%
921
2 minutes
20
Longevity, as a complex life-history trait, shares an ontogenetic relationship with other quantitative traits, such as epigenetic and environmental factors. Therefore, it is important to identify environmental factors that may modify the epigenome to establish healthy aging. This study explored the association between tap drinking water and longevity in Cilento, Italy, to understand whether trace elements in local drinking water may have an influence on old, nonagenarian, and centenarian people and promote their health and longevity. Data on population and water sources were collected through the National Demographic Statistics, the Cilento Municipal Archives, and the Cilento Integrated Water Service. Ordinary least squares (OLS) regression and a geographically weight regression (GWR) model were used to study the spatial relationship between the explanatory and outcome variables of longevity. The results of the study showed that the prevalence of longevity is concentrated in the central, northern and southeastern areas of the territory and that some trace elements present in tap water may contribute to local longevity in Cilento. Specifically, all Cilento municipalities had alkaline tap water, and the municipalities with the highest longevity concentrations had higher alkalinity levels than the other municipalities, soft to medium-hard water hardness, an amount of total dissolved solids equivalent to the level of excellent water, lower amounts of sodium, adequate iron concentration, and adequate dietary intake of manganese per day.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823399 | PMC |
http://dx.doi.org/10.3390/nu15010218 | DOI Listing |
Food Res Int
November 2025
Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil. Electronic address:
The consumption of water of low microbiological quality can be detrimental and may cause significant health issues. Thus, amplicon sequencing can be an advantageous method to observe bacterial diversity in water. This study aimed to understand the complex bacterial communities present in natural mineral water packaged in 20 L returnable containers through amplicon sequencing.
View Article and Find Full Text PDFAnal Sci
September 2025
Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China.
The accurate detection of trace perfluoroalkyl acids (PFAAs) in drinking water remains challenging due to nonspecific adsorption losses during pretreatment. This study systematically evaluated the adsorption behaviors of 11 PFAAs across five filtration membranes and four solid-phase extraction (SPE) sorbents to establish an optimized analytical protocol. Results demonstrated that glass fiber (GL) filters minimized PFAAs retention (94.
View Article and Find Full Text PDFBMJ Open
September 2025
Medicine, Jigjiga University, Jigjiga, Ethiopia
Objective: The study aims to assess the magnitude of acute gastroenteritis and associated factors among under-five children visiting public hospitals in Jigjiga City, Somali Region, Ethiopia.
Design: A hospital-based cross-sectional study design was used to carry out the study. We then employed a systematic random sampling technique through face-to-face interviews to gather the data.
J Am Chem Soc
September 2025
Department of Chemistry, Northwestern University Evanston, Illinois 60208, United States.
Per- and polyfluoroalkyl substances (PFASs) are environmentally persistent, bioaccumulative, and toxic chemicals that contaminate global drinking water resources. Their ubiquity and potential impact on human health motivate large-scale remediation. Conventional materials used to remove PFASs during drinking water production are functionally inefficient or energetically expensive, motivating the discovery of new materials and technologies.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, UMR 6296, Clermont-Ferrand 63000, France.
Pesticide contamination is a growing and alarming concern for both the environment and human health. Widely used in agriculture to control pests and disease carriers, pesticides undergo extensive long-range atmospheric transport in the gas phase, in aerosols, and, as shown here, in clouds. We measured the concentration of 32 pesticides at the puy de Dôme observatory (France) in the sub μg L to μg L range in cloud water, largely arising from regional to long-range transport that also involves pesticides currently banned for agricultural use in France.
View Article and Find Full Text PDF