Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

By combining the energy input from two red photons, chemical reactions that would normally require blue or ultraviolet irradiation become accessible. Key advantages of this biphotonic excitation strategy are that red light usually penetrates deeper into complex reaction mixtures and causes less photo-damage than direct illumination in the blue or ultraviolet. Here, we demonstrate that the primary light-absorber of a dual photocatalytic system comprised of a transition metal-based photosensitizer and an organic co-catalyst can completely alter the reaction outcome. Photochemical reductions are achieved with a copper(i) complex in the presence of a sacrificial electron donor, whereas oxidative substrate activation occurs with an osmium(ii) photosensitizer. Based on time-resolved laser spectroscopy, this changeover in photochemical reactivity is due to different underlying biphotonic mechanisms. Following triplet energy transfer from the osmium(ii) photosensitizer to 9,10-dicyanoanthracene (DCA) and subsequent triplet-triplet annihilation upconversion, the fluorescent singlet excited state of DCA triggers oxidative substrate activation, which initiates the to isomerization of an olefin, a [2 + 2] cycloaddition, an aryl ether to ester rearrangement, and a Newman-Kwart rearrangement. This oxidative substrate activation stands in contrast to the reactivity with a copper(i) photosensitizer, where photoinduced electron transfer generates the DCA radical anion, which upon further excitation triggers reductive dehalogenations and detosylations. Our study provides the proof-of-concept for controlling the outcome of a red-light driven biphotonic reaction by altering the photosensitizer, and this seems relevant in the greater context of tailoring photochemical reactivities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769107PMC
http://dx.doi.org/10.1039/d2sc05229fDOI Listing

Publication Analysis

Top Keywords

oxidative substrate
12
substrate activation
12
photochemical reactivity
8
red light
8
blue ultraviolet
8
osmiumii photosensitizer
8
photosensitizer
5
sensitizer-controlled photochemical
4
reactivity upconversion
4
upconversion red
4

Similar Publications

Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.

View Article and Find Full Text PDF

Electrochemical Copper Catalysis: A Triple Catalytic System for Transient C(sp)-H Functionalization through Mediated Electrolysis.

ACS Electrochem

September 2025

Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 0BZ, United Kingdom.

The development of copper-catalyzed C-H functionalization processes is challenging due to the inefficiency of conventional chemical oxidants in regenerating the copper catalyst. This study details the development of a mediated electrosynthetic approach involving triple catalytic cycles in transient C-H functionalization to achieve efficient copper-catalyzed C-(sp)-H sulfonylation of benzylamines with sodium sulfinate salts. The triple catalytic system consists of a copper organometallic cycle for C-H functionalization, an aldehyde transient directing group (TDG) as an organocatalyst for imine formation, and a ferrocenium salt as an electrocatalyst.

View Article and Find Full Text PDF

The sustainable synthesis of bio-based monomers from renewable biomass intermediates is a central goal in green chemistry and biorefinery innovation. This study introduces a synergistic catalytic-enzymatic strategy for the efficient and eco-friendly oxidation of 5-hydroxymethylfurfural (5-HMF) into 2,5-furandicarboxylic acid (FDCA), a key monomer for next-generation biodegradable plastics. The catalytic phase employed non-noble metal catalysts, MnO and Co-Mn supported on activated carbon (Co-Mn/AC), under mild batch reaction conditions at 90 °C.

View Article and Find Full Text PDF

LMCT-Driven Iron Photocatalysis: Mechanistic Insights and Synthetic Applications.

Chemistry

September 2025

Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.

Iron-based photocatalysis has emerged as a sustainable and versatile platform for facilitating a wide range of chemical transformations, offering an appealing alternative to precious metal photocatalysts. Among the various activation modes, ligand-to-metal charge transfer (LMCT)-driven homolysis of Fe(III)-L(ligand) bonds has garnered considerable attention due to its ability to generate reactive radical species under mild conditions, without requiring the matching of substrates' redox potentials. In this review, we present a comprehensive overview of recent developments in LMCT-driven iron photocatalysis, with a particular focus on both mechanistic insights and synthetic applications published in the last five years.

View Article and Find Full Text PDF

Hematite-facilitated anaerobic oxidation of organics: Novel strategy to alleviate bioclogging in constructed wetlands.

Bioresour Technol

September 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China. Electronic address:

Bioclogging from organic accumulation significantly limits efficiency and longevity of constructed wetlands (CWs). In this study, hematite was introduced to enhance the oxidation of organics by dissimilatory iron reduction (DIR). Compared to gravel CWs (G-CWs), hematite CWs (H-CWs) enhanced the removal of COD, ammonium, and phosphate by 12 %, 46 %, and 72 %, while reducing CH and NO emissions by 69 % and 36 %.

View Article and Find Full Text PDF