Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In-depth and reliable characterization of advanced nanoparticles is crucial for revealing the origin of their unique features and for designing novel functional materials with tailored properties. Due to their small size, characterization beyond nanometric resolution, notably, by transmission electron microscopy (TEM) and associated techniques, is essential to provide meaningful information. Nevertheless, nanoparticles, especially those containing volatile elements or organic components, are sensitive to radiation damage. Here, using CsPbBr perovskite nanocrystals as an example, strategies to preserve the native structure of radiation-sensitive nanocrystals in high-resolution electron microscopy studies are presented. Atomic-resolution images obtained using graphene support films allow for a clear comparison with simulation results, showing that most CsPbBr nanocrystals are orthorhombic. Low-dose TEM reveals faceted nanocrystals with no formed Pb crystallites, a feature observed in previous TEM studies that has been attributed to radiation damage. Cryo-electron microscopy further delays observable effects of radiation damage. Powder electron diffraction with a hybrid pixel direct electron detector confirms the domination of orthorhombic crystals. These results emphasize the importance of optimizing TEM grid preparation and of exploiting data collection strategies that impart minimum electron dose for revealing the true structure of radiation-sensitive nanocrystals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808052PMC
http://dx.doi.org/10.3389/fchem.2022.1058620DOI Listing

Publication Analysis

Top Keywords

radiation damage
16
electron microscopy
12
sensitive radiation
8
damage cspbbr
8
cspbbr nanocrystals
8
structure radiation-sensitive
8
radiation-sensitive nanocrystals
8
nanocrystals
6
electron
5
practice electron
4

Similar Publications

LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.

View Article and Find Full Text PDF

Luteolin Enhances Anticancer Effects of PX-478 during Hypoxic Response in Metastatic Breast Cancer Cells.

Anticancer Agents Med Chem

September 2025

Molecular Biology and Genetics Department, Faculty of Arts and Science, Burdur Mehmet Akif Ersoy University, Burdur, 15100, Turkey.

Introduction: The presence of severe hypoxic stress can drive tumor growth, angiogenesis, and metastatic characteristics via up-regulated hypoxia-inducible factor 1-alpha (HIF-1α). Hence, targeting HIF-1α is considered a promising strategy, as increased HIF-1α activity is a key factor in the aggressive phenotype of malignancies. In this study, we aimed to investigate the anti-cancer effects of several flavonoids, both single and in combination with PX-478, in breast cancer cell lines.

View Article and Find Full Text PDF

Introduction: Leukemia and radiation-induced liver toxicity are significant health challenges requiring effective therapeutic strategies. This study aimed to evaluate the therapeutic efficacy and radiosensitizing effects of Diosgenin-loaded silver nanoparticles (Dio-AgNPs) in ENU-induced leukemic mice, with a focus on their dual role in mitigating leukemia progression and γ-irradiation-induced hepatotoxicity.

Methods: Dio-AgNPs were synthesized and characterized using TEM, UV-Vis spectroscopy, FT-IR spectroscopy, and encapsulation efficiency analysis.

View Article and Find Full Text PDF

Advances of gas molecules against radiation damage.

Biochem Biophys Res Commun

September 2025

State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China. Electronic address:

There is an increasing population receiving radiotherapy every year, during which unexpected damage to normal tissues often occurs unavoidably. How to mitigate the radiation-induced injuries and enhance patients' life quality remains a pressing challenge. Recently, gas molecules employment has emerged as a novel therapeutic modality, garnering increasing interest from researchers.

View Article and Find Full Text PDF

Multi-Enzymatic Cascade Catalysis in Photodynamic Nanozymes for Augmenting Radiotherapy of Breast Cancer.

Adv Healthc Mater

September 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.

Overcoming resistance to radiotherapy remains a significant challenge in breast cancer management. A one-step coordinated synthesis of BODIPY-integrated photodynamic nanozymes (FZBNPs) that facilitate an orthogonal catalytic cascade for radiotherapy potentiation is presented. The engineered FZBNPs simultaneously alleviate tumor hypoxia through catalase-mimetic oxygen (O) generation and amplify reactive oxygen species (ROS) production via peroxidase-like activity, synergizing with BODIPY-mediated singlet oxygen (O) generation under 660 nm light irradiation.

View Article and Find Full Text PDF