A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Breastfeeding enrichment of B. longum subsp. infantis mitigates the effect of antibiotics on the microbiota and childhood asthma risk. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Early antibiotic exposure is linked to persistent disruption of the infant gut microbiome and subsequent elevated pediatric asthma risk. Breastfeeding acts as a primary modulator of the gut microbiome during early life, but its effect on asthma development has remained unclear.

Methods: We harnessed the CHILD cohort to interrogate the influence of breastfeeding on antibiotic-associated asthma risk in a subset of children (n = 2,521). We then profiled the infant microbiomes in a subset of these children (n = 1,338) using shotgun metagenomic sequencing and compared human milk oligosaccharide and fatty acid composition from paired maternal human milk samples for 561 of these infants.

Findings: Children who took antibiotics without breastfeeding had 3-fold higher asthma odds, whereas there was no such association in children who received antibiotics while breastfeeding. This benefit was associated with widespread "re-balancing" of taxonomic and functional components of the infant microbiome. Functional changes associated with asthma protection were linked to enriched Bifidobacterium longum subsp. infantis colonization. Network analysis identified a selection of fucosylated human milk oligosaccharides in paired maternal samples that were positively associated with B. infantis and these broader functional changes.

Conclusions: Our data suggest that breastfeeding and antibiotics have opposing effects on the infant microbiome and that breastfeeding enrichment of B. infantis is associated with reduced antibiotic-associated asthma risk.

Funding: This work was supported in part by the Canadian Institutes of Health Research; the Allergy, Genes and Environment Network of Centres of Excellence; Genome Canada; and Genome British Columbia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medj.2022.12.002DOI Listing

Publication Analysis

Top Keywords

asthma risk
12
human milk
12
breastfeeding enrichment
8
subsp infantis
8
gut microbiome
8
antibiotic-associated asthma
8
subset children
8
children n =
8
paired maternal
8
antibiotics breastfeeding
8

Similar Publications