Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photoelectrochemical (PEC) water splitting that functions in pH-neutral electrolyte attracts increasing attention to energy demand sustainability. Here, we propose a strategy to in situ form a NiB layer by tuning the composition of the neutral electrolyte with the additions of nickel and borate species, which improves the PEC performance of the BiVO photoanode. The NiB/BiVO exhibits a photocurrent density of 6.0 mA cm at 1.23 V with an onset potential of 0.2 V under 1 sun illumination. The photoanode displays a photostability of over 600 hours in a neutral electrolyte. The additive of Ni in the electrolyte, which efficiently inhibits the dissolution of NiB, can accelerate the photogenerated charge transfer and enhance the water oxidation kinetics. The borate species with B─O bonds act as a promoter of catalyst activity by accelerating proton-coupled electron transfer. The synergy effect of both species suppresses the surface charge recombination and inhibits the photocorrosion of BiVO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812387PMC
http://dx.doi.org/10.1126/sciadv.ade4589DOI Listing

Publication Analysis

Top Keywords

water splitting
8
neutral electrolyte
8
borate species
8
dynamic semiconductor-electrolyte
4
semiconductor-electrolyte interface
4
interface sustainable
4
sustainable solar
4
solar water
4
splitting 600
4
600 hours
4

Similar Publications

Phase-Reconstruction of S-Doped (NiCo)WC for Efficient and Stable Oxygen Evolution Reaction Electrocatalysis.

Nano Lett

September 2025

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.

Developing highly active and stable nonprecious electrocatalysts toward sluggish alkaline oxygen evolution reaction (OER) is essential for large-scale green hydrogen production via electrochemical water splitting. Here we report phase and surface co-reconstruction of S-doped (NiCo)WC nanoparticles into (NiCo)C with amorphous electroactive NiCoOOH layer for highly efficient alkaline OER by W dissolution and NiCo surface oxidation. The W dissolution results in the formation of Brønsted base WO ions, which electrostatically accumulate around electrode to promote water dissociation into abundant OH* intermediates, in situ constructing a locally strong alkaline microenvironment to facilitate OH* adsorption on NiCoOOH sites and trigger lattice-oxygen oxidation path.

View Article and Find Full Text PDF

Metal-Organic Framework (MOF)-Based Catalysts for Sustainable Energy Technologies: A Review.

Langmuir

September 2025

Henan International Joint Laboratory of Nano-Photoelectric Magnetic Material, School of Material Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.

The demand for sustainable energy technologies is high due to the depletion and risks linked to fossil fuel usage. Diverse energy technologies, such as regenerative fuel cells, zinc-air batteries, and comprehensive water-splitting devices, possess significant potential for the advancement of green energy. MOFs hold a prominent position among the various kinds of materials utilized in renewable energy technologies.

View Article and Find Full Text PDF

Preparation of cold-stored platelets on-demand: A novel approach to inventory management.

Transfusion

September 2025

Research and Development, Australian Red Cross Lifeblood, Sydney, New South Wales, Australia.

Background: Cold-stored platelets (CSP) are now being used to treat acute bleeding. However, as CSP are less suitable for prophylaxis, both room temperature (RT) platelets and CSP will be required, which complicates inventory management. The production of CSP "on-demand" from RT platelets may be a desirable option.

View Article and Find Full Text PDF

Constructing robust electrocatalysts and shedding light on the processes of surface reconstruction is crucial for sustained hydrogen production and a deeper understanding of catalytic behavior. Here, a novel ZIF-67-derived lanthanum- and phosphorus-co-doped CoO catalyst (La, P-CoO) has been reported. X-ray absorption spectroscopy (XAS) confirms that the La and P co-doping reduces the coordination number (CN), improves oxygen vacancies (O), and leads to lattice distortion.

View Article and Find Full Text PDF

Objective: This study aims to identify risk factors and develop predictive models of child malnutrition (stunting, wasting, and underweight) in Pakistani children under five using machine learning approaches.

Study Design: This cross-sectional design utilized data from the Pakistan Demographic and Health Survey 2017-2018 (PDHS).

Methods: Logistic regression was employed to identify significant socio-demographic and health-related risk factors.

View Article and Find Full Text PDF