A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Genesis of a functional astrocyte syncytium in the developing mouse hippocampus. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Astrocytes are increasingly shown to operate as an isopotential syncytium in brain function. Protoplasmic astrocytes acquire this ability to functionally go beyond the single-cell level by evolving into a spongiform morphology, cytoplasmically connecting into a syncytium, and expressing a high density of K conductance. However, none of these cellular/functional features exist in neonatal newborn astrocytes, which imposes a basic question of when a functional syncytium evolves in the developing brain. Our results show that the spongiform morphology of individual astrocytes and their spatial organization all reach stationary levels by postnatal day (P) 15 in the hippocampal CA1 region. Functionally, astrocytes begin to uniformly express a mature level of passive K conductance by P11. We next used syncytial isopotentiality measurement to monitor the maturation of the astrocyte syncytium. In uncoupled P1 astrocytes, the substitution of endogenous K by a Na -electrode solution ([Na ] ) resulted in the total elimination of the physiological membrane potential (V ), and outward K conductance as predicted by the Goldman-Hodgkin-Katz (GHK) equation. As more astrocytes are coupled to each other through gap junctions during development, the [Na ] -induced loss of physiological V and the outward K conductance is progressively compensated by the neighboring astrocytes. By P15, a stably established syncytial isopotentiality (-73 mV), and a fully compensated outward K conductance appeared in all [Na ] -recorded astrocytes. Thus, in view of the developmental timeframe wherein a singular syncytium is anatomically and functionally established for intra-syncytium K equilibration, an astrocyte syncytium becomes fully operational at P15 in the mouse hippocampus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10777263PMC
http://dx.doi.org/10.1002/glia.24327DOI Listing

Publication Analysis

Top Keywords

astrocyte syncytium
12
outward conductance
12
astrocytes
9
mouse hippocampus
8
spongiform morphology
8
syncytial isopotentiality
8
syncytium
7
conductance
5
genesis functional
4
functional astrocyte
4

Similar Publications