Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2) and is responsible for a higher degree of morbidity and mortality worldwide. There is a smaller number of approved therapeutics available to target the SARS-CoV-2 virus, and the virus is evolving at a fast pace. So, there is a continuous need for new therapeutics to combat COVID-19. The main protease (M ) enzyme of SARS-CoV-2 is essential for replication and transcription of the viral genome, thus could be a potent target for the treatment of COVID-19. In the present study, we performed an in-silico screening analysis of 400 diverse bioactive inhibitors with proven antibacterial and antiviral properties against M drug target. Ten compounds showed a higher binding affinity for M than the reference compound (N3), with desired physicochemical properties. Furthermore, in-depth docking and superimposition revealed that three compounds (MMV1782211, MMV1782220, and MMV1578574) are actively interacting with the catalytic domain of M . In addition, the molecular dynamics simulation study showed a solid and stable interaction of MMV178221-M complex compared to the other two molecules (MMV1782220, and MMV1578574). In line with this observation, MM/PBSA free energy calculation also demonstrated the highest binding free energy of -115.8 kJ/mol for MMV178221-M compound. In conclusion, the present in silico analysis revealed MMV1782211 as a possible and potent molecule to target the M and must be explored in vitro and in vivo to combat the COVID-19.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202200600DOI Listing

Publication Analysis

Top Keywords

main protease
8
combat covid-19
8
mmv1782220 mmv1578574
8
free energy
8
drug repurposing
4
repurposing approach
4
approach identify
4
identify therapeutics
4
therapeutics screening
4
screening pathogen
4

Similar Publications

Human proteinase 3 (hPR3) is a lysosomal enzyme of the serine protease type. In autoimmune vasculitis, autoantibodies to hPR3 appear to have a role in the inception of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), where this protein is the main autoantigen. Indeed, patients with antibodies against hPR3 have more severe symptoms, relapses, and resistance to immunosuppressive therapies, supporting an important role for this autoantigen in the pathophysiology and severity of AAV.

View Article and Find Full Text PDF

This study aimed to evaluate the effect of some environment- and animal-based factors, such as body condition score (BCS) on 15-20 days before parturition, parity, and calving season on colostrum dry matter (DM), fat, solids-nonfat (SNF), protein, and lactose contents as well as colostrum and calf's serum immunoglobulin (IgG, IgA, and IgM), IGF-1, and lactoferrin concentrations in buffaloes. Therefore, the components of colostrum (at the first milking) and calf serum samples (at 24-48 h and 28 days after birth) from 86 Anatolian buffalo cows were analyzed by an infrared milk analyzer and ELISA test. The high BCS enhanced colostrum DM, fat, and IgG content; calf serum IgG concentration at 24-48 h, and lactoferrin at 28 days compared to low BCS.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has spurred global efforts to develop therapeutic approaches. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication and a key target for therapeutic development. In this study, 22 thiosemicarbazone derivatives were synthesized.

View Article and Find Full Text PDF

Multifaceted characterization of lactoferrin and (-)-epigallocatechin-3-gallate (EGCG) interactions: development of the pickering emulsions for microencapsulated functional foods.

Food Res Int

November 2025

Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China.

In this study, we explored the application of lactoferrin-(-)-epigallocatechin-3-gallate (LF-EGCG) complex with rapeseed, soybean, walnut, peanut and sesame oil for the preparation of Pickering emulsions and its spray-dried microcapsules. Spectroscopy and molecular docking revealed that LF-EGCG binds via hydrogen bonds, hydrophobic interactions, and van der Waals forces. Structural analysis demonstrated that 0.

View Article and Find Full Text PDF

Erythrodontium julaceum, Marchantia polymorpha, and Plagiochila bantamensis are widely distributed bryophytes in Vietnam. However, comprehensive chemical and biological data on their composition remain limited. Bio-guided isolation based on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M inhibition was applied to these species, resulting in the identification of 23 metabolites.

View Article and Find Full Text PDF