A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nano-chlorapatite modification enhancing cadmium(II) adsorption capacity of crop residue biochars. | LitMetric

Nano-chlorapatite modification enhancing cadmium(II) adsorption capacity of crop residue biochars.

Sci Total Environ

Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cadmium (Cd) contamination in rivers or lakes has attracted worldwide concerns. Biochar pyrolyzed form crop residues (CR) could adsorb Cd(II) from aquatic environments, while the removal capacity of single CR biochar is relatively low. Nano-chlorapatite (nClAP) modification can enhance metal scavenging ability, but little is known about the behaviors and mechanisms of Cd(II) adsorption by nClAP-modified CR biochars. In this study, the influences of feedstock type, pyrolysis temperature, nClAP modification and aquatic environments on Cd(II) adsorption of biochars derived from rice (RB) and wheat (WB) husks were investigated comprehensively. Results showed that the pristine RB and WB showed low and similar Cd(II) adsorption capacities, while the rise of pyrolysis temperatures from 300 to 600 °C significantly improved the adsorption capacities. The Cd(II) adsorption of both RB and WB was regarded as monolayer chemical processes controlled by chemical precipitation, surface complexation and cation exchange mechanisms. Moreover, the nClAP modification notably enhanced Cd(II) adsorption capacities from 13.2 to 39.9 mg·g of pristine biochars to 25.2-60.7 mg·g of modified biochars attributed to the improved contribution of Cd(II)-phosphate precipitation. Among all biochars, the nClAP-modified RB and WB pyrolyzed at 500 °C had the highest Cd(II) adsorption capacities with 60.7 and 48.3 mg·g, respectively. These biochars could maintain good adsorption performances under the neutral-alkaline (pH 6-8), low ionic strength, high dissolved organic matter and all oxidation-reduction potential conditions. In conclusion, this study reveals the importance of nClAP modification to optimize Cd(II) adsorption of CR biochars, which provides a promising future for its practical application in aquatic Cd(II) scavenging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.161097DOI Listing

Publication Analysis

Top Keywords

cdii adsorption
28
nclap modification
16
adsorption capacities
16
adsorption
10
cdii
9
biochars
8
aquatic environments
8
adsorption biochars
8
nano-chlorapatite modification
4
modification enhancing
4

Similar Publications