98%
921
2 minutes
20
Environmental filtering (EF), the abiotic exclusion of species, can have first order, direct effects with cascading consequences for population dynamics, especially at range edges where abiotic conditions are suboptimal. Abiotic stress gradients associated with EF may also drive indirect second order effects, including exacerbating the effects of competitors, disease, and parasites on marginal populations because of suboptimal physiological performance. We predicted a cascade of first and second order EF-associated effects on marginal populations of the invasive mussel Mytilus galloprovincialis, plus a third order effect of EF of increased epibiont load due to second order shell degradation by endoliths. Mussel populations on rocky shores were surveyed across 850 km of the south-southeast coast of South Africa, from the species' warm-edge range limit to sites in the centre of their distribution, to quantify second order (endolithic shell degradation) and third order (number of barnacle epibionts) EF-associated effects as a function of along-shore distance from the range edge. Inshore temperature data were interpolated from the literature. Using in situ temperature logger data, we calculated the effective shore level for several sites by determining the duration of immersion and emersion. Summer and winter inshore water temperatures were linked to distance from the mussel's warm range edge (our proxy for an EF-associated stress gradient), suggesting that seasonality in temperature contributes to first order effects. The gradient in thermal stress clearly affected densities, but its influence on mussel size, shell degradation, and epibiosis was weaker. Relationships among mussel size, shell degradation, and epibiosis were more robust. Larger, older mussels had more degraded shells and more epibionts, with endolithic damage facilitating epibiosis. EF associated with a gradient in thermal stress directly limits the distribution, abundance, and size structure of mussel populations, with important indirect second and third order effects of parasitic disease and epibiont load, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.161184 | DOI Listing |
Eco Environ Health
September 2025
Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China.
Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2025
Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, 46100 Burjassot, Valencia Spain.
The effects of pressure on the crystal structure of scheelite-type perrhenates were studied using synchrotron powder X-ray diffraction and density-functional theory. At ambient conditions, the studied materials AgReO, KReO, and RbReO, exhibit a tetragonal scheelite-type crystal structure described by space group 4/. Under compression, a transition from scheelite-to-M'-fergusonite (space group 2/) was observed at 1.
View Article and Find Full Text PDFBeilstein J Nanotechnol
September 2025
Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Vietnam.
Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.
View Article and Find Full Text PDFRSC Adv
September 2025
Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai Tamil Nadu 602105 India.
A free radical polymerization approach was applied to synthesize different carboxymethyl cellulose-grafted poly(acrylamide) hydrogels (Hyd) composited with biochar, magnetic biochar, and magnetic biochar decorated with ZIF-67 to decontaminate methylene blue (MB) from water media. Biochar was obtained from walnut shells (WS) by a pyrolysis method, and magnetic biochar (WS/CoFeO) and biochar-decorated ZIF-67 (WS/CoFeO/ZIF-67) were prepared by chemical co-precipitation and hydrothermal methods, respectively. An increase in the amount of these particles by up to 10 wt% enhanced the removal performance.
View Article and Find Full Text PDFRSC Adv
September 2025
Otto-von-Guericke-University Magdeburg, Chemical Institute, Chair for Industrial Chemistry Universitätsplatz 2 39106 Magdeburg Germany
This work elucidates the thermo-kinetics of the thermal conversion of cameroonian kaolin to metakaolin as the main product. The thermokinetical parameters (activation energy and pre-exponential factor ) for the kaolin conversion were calculated using model-free methods, the Kissinger-Akahira-Sunrose (KAS) and the Flynn-Wall-Ozawa (FWO) method, and differential methods (Kissinger and Ozawa) additionally including iterative procedures for KAS and FWO methods (KAS-Ir; FWO-Ir). The cameroonian kaolin was heat-treated using three different heating rates, 5, 20 and 40 K min, leading to metakaolin samples named MK-(5), MK-(20) and MK-(40).
View Article and Find Full Text PDF