98%
921
2 minutes
20
Heterogeneous hydrogenation with hydrogen spillover has been demonstrated as an effective route to achieve high selectivity towards target products. More effort should be paid to understand the complicated correlation between the nature of supports and hydrogenation involving hydrogen spillover. Herein, we report the development of the hydrogenation system of hexagonal boron nitride (h-BN)-supported Pd nanoparticles for the hydrogenation of aldehydes/ketones to alcohols with hydrogen spillover. Nitrogen vacancies in h-BN determine the feasibility of hydrogen spillover from Pd to h-BN. The hydrogenation of aldehydes/ketones with hydrogen spillover from Pd proceeds on nitrogen vacancies on h-BN. The weak adsorption of alcohols to h-BN inhibits the deep hydrogenation of aldehydes/ketones, thus leading to high catalytic selectivity to alcohols. Moreover, the hydrogen spillover-based hydrogenation mechanism makes the catalyst system exhibit a high tolerance to CO poisoning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202217191 | DOI Listing |
Inorg Chem
September 2025
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
The electrochemical reduction of CO into valuable C products presents a sustainable and efficient strategy for the utilization of CO and long-term renewable energy storage. Yet, enhancing the efficiency of the electrocatalytic CO reduction reaction (eCORR) in aqueous systems remains challenging due to the difficulty in activating both CO and HO molecules. In this study, we focus on water activation generating reactive hydrogen species (*H) to boost C product selectivity.
View Article and Find Full Text PDFChem Sci
August 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua Zhejiang 321004 P. R. China
Selective photoreduction of CO with HO to hydrocarbons is challenged by inadequate and uncontrollable electron and proton feeding. Herein, this limitation is overcome by integrating HO dissociation, CO reduction, and O evolution catalysts into a dual S-scheme heterojunction and regulating exposed facets of the heterojunction supports. In this design, H and OH species generated by HO dissociation on the NH-MIL-125 support transfer to the T-COF shell and FeO insert for CO reduction and O evolution, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning 121013, China.
It remains critical and challenging to synthesize non-noble metal catalysts with excellent hydrogen evolution reaction (HER) activity in a wide pH range. High-temperature pyrolysis is one of the main methods for catalyst synthesis but can be time-consuming and leads to agglomeration easily. In view of this, molybdenum carbide and molybdenum nitride composite (MoC@MoN) was prepared via CO laser irradiation technology.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
The elevated toxicity and persistent bioaccumulative propensity of per- and polychlorinated organics (PCOs) pose a substantial environmental hazard; however, current dechlorination technologies encounter challenges in surmounting the cumulative reductive inertia inherent to PCOs, resulting in low dechlorination efficiency and the persistence of ecotoxicity. Here, a vacancy-engineered zero-valent iron (ZVI) is proposed to address this challenge. The surface-modified carbon vacancies can extract outward-flowing electrons from lattice copper-doped ZVI (CvCu-ZVI), which react with trapped protons to generate reactive hydrogen in situ that subsequently spills over onto ZVI.
View Article and Find Full Text PDFACS Nano
August 2025
Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China.
Atomically precise Cu clusters with stabilized low-coordinated Cu species demonstrate promising deep CO reduction capability, although product selectivity requires enhancement. To address this, two Cu clusters, [Cu(PPh)(PET)](BF) and [CuS(PPh)(PET)] (denoted as Cu and Cu, respectively) were constructed via ligand-mediated assembly of Cu triangular units. Both clusters effectively catalyze deep CO reduction, with CH as the dominant product (FE = 60.
View Article and Find Full Text PDF