98%
921
2 minutes
20
This work explores the conformational preferences and the structure-property correlations of poly(butylene 2,5-furandicarboxylate) (PBF), a longer chain analogue of the most well-known biobased polyester from the furan family, poly(ethylene 2,5-furandicarboxylate) (PEF). A thorough computational spectroscopic study-including infrared, Raman and inelastic neutron scattering spectroscopy, combined with discrete and periodic density functional theory calculations-allowed the identification of dominant structural motifs in the amorphous and crystalline regions. Discrete calculations and vibrational spectroscopy of semi-crystalline and amorphous samples strongly support the predominance of conformations of the butylene glycol fragment in both the crystalline and amorphous domains. In what concerns the furandicarboxylate fragment, amorphous domains are dominated by conformations, while in the crystalline domains the forms prevail. A possible crystalline structure-built from these conformational preferences and including a network of C-H···O hydrogen bond contacts-was optimized using periodic density functional theory. This proposed crystal structure avoids the unrealistic structural features of the previously proposed X-ray structure, provides an excellent description of the inelastic neutron scattering spectrum of the semi-crystalline form, and allows the correlation between microscopic structure and macroscopic properties of the polymer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763574 | PMC |
http://dx.doi.org/10.3389/fchem.2022.1056286 | DOI Listing |
Ecotoxicol Environ Saf
September 2025
Chongqing Ecological and Environmental Monitoring Center, Chongqing 401147, PR China. Electronic address:
Plastics degradation generates microplastics (MPs), posing a risk to soil function and organisms. Currently, the impact of MPs derived from different polymers remains poorly understood. In this study, the effects of three polymers (polypropylene (PP), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT)) were investigated at environmentally relevant levels (0, 0.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key, Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
A dynamically crosslinked network VEC (vulcanized ESO and CA) was synthesized in situ via zinc acetate-catalyzed epoxy ring-opening between epoxidized soybean oil (ESO) and anhydrous citric acid (CA), then incorporated into polylactic acid (PLA)/polybutylene adipate terephthalate (PBAT) blends to enhance interfacial compatibility. The dynamic ester-exchange network acted as an intermediate phase, improving the integration of the flexible PBAT phase within the rigid PLA matrix. VEC content critically influenced mechanical properties, with in-situ crosslinking during dynamic vulcanization enhancing chain interactions and blend homogeneity.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
BOKU University, Department of Agricultural Sciences, Institute of Environmental Biotechnology, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria. Electronic address:
The growing issue of petroleum-based polymer waste demands sustainable recycling strategies, with enzymatic processes offering a promising solution. This study investigates enzymatic decomposition of polyethylene terephthalate (PET) and polybutylene adipate terephthalate (PBAT) by Gordonia species, known for their pollutant-degrading capabilities. When cultivated with PET, G.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Regional and Urban Ecology, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation
Reactive oxygen species (ROS) are critical mediators of soil biogeochemical processes. While the production of ROS with biochar (BC) in the rhizosphere has not been explored. We demonstrate that BC and Fe-modified biochar (FeBC), prepared at 400°C and 600°C, influence ROS generation in paddy soil containing biodegradable (polybutylene succinate: PBS) and conventional (polystyrene) microplastics (MPs).
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States.
Cellulose diacetate (CDA), a biobased material widely used in consumer products, is biodegradable in the coastal ocean. However, the effect of water temperature on the degradation rates is unknown, limiting projections of lifetime across space and time. Here, we incubated CDA-based materials (film, foam, and straw), paper straws, polyethylene (PE) films, and poly(butylene adipate terephthalate) (PBAT) straws for 28 weeks at 10 and 20 °C in continuous-flow seawater mesocosms.
View Article and Find Full Text PDF