Enzymatic Synthesis of Vancomycin-Modified DNA.

Molecules

Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, CEDEX 15, 75724 Paris, France.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many potent antibiotics fail to treat bacterial infections due to emergence of drug-resistant strains. This surge of antimicrobial resistance (AMR) calls in for the development of alternative strategies and methods for the development of drugs with restored bactericidal activities. In this context, we surmised that identifying aptamers using nucleotides connected to antibiotics will lead to chemically modified aptameric species capable of restoring the original binding activity of the drugs and hence produce active antibiotic species that could be used to combat AMR. Here, we report the synthesis of a modified nucleoside triphosphate equipped with a vancomycin moiety on the nucleobase. We demonstrate that this nucleotide analogue is suitable for polymerase-mediated synthesis of modified DNA and, importantly, highlight its compatibility with the SELEX methodology. These results pave the way for bacterial-SELEX for the identification of vancomycin-modified aptamers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782525PMC
http://dx.doi.org/10.3390/molecules27248927DOI Listing

Publication Analysis

Top Keywords

synthesis modified
8
enzymatic synthesis
4
synthesis vancomycin-modified
4
vancomycin-modified dna
4
dna potent
4
potent antibiotics
4
antibiotics fail
4
fail treat
4
treat bacterial
4
bacterial infections
4

Similar Publications

Background: This study aimed to investigate the gender-specific associations of skeletal muscle mass and fat mass with non-alcoholic fatty liver disease (NAFLD) and NAFLD-related liver fibrosis in two population-based studies.

Methods: Analyses were based on data from the MEGA (n = 238) and the MEIA study (n = 594) conducted between 2018 and 2023 in Augsburg, Germany. Bioelectrical impedance analysis was used to evaluate relative skeletal muscle mass (rSM) and SM index (SMI) as well as relative fat mass (rFM) and FM index (FMI); furthermore, the fat-to-muscle ratio was built.

View Article and Find Full Text PDF

Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.

View Article and Find Full Text PDF

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF

Neuronal development and function are orchestrated by a plethora of regulatory mechanisms that control the abundance, localization, interactions, and function of proteins. A key role in this regard is assumed by post-translational protein modifications (PTMs). While some PTM types, such as phosphorylation or ubiquitination, have been explored comprehensively, PTMs involving ubiquitin-like modifiers (Ubls) have remained comparably enigmatic (Ubls).

View Article and Find Full Text PDF

Auxin Gradients Determine Reproductive Development in Pea (Pisum sativum).

Physiol Plant

September 2025

Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.

Auxins are involved in the regulation of fruit set and development; however, the role of IAA is unclear in pea (Pisum sativum) since the endogenous auxin 4-Cl-IAA appears to be the auxin stimulating ovary (pericarp) growth. To further understand the role of auxins during fruit development, auxin localization, quantitation, transport, and gene expression activity were assessed in this model legume species. IAA levels and auxin activity (DR5::β-Glucuronidase [GUS] staining and enzyme activity) were substantially reduced in the pericarp vascular tissues, pedicels, and peduncles of fruit upon seed removal, reflecting auxin transport streams derived from the seeds through these tissues.

View Article and Find Full Text PDF