98%
921
2 minutes
20
Mitochondria are organelles that play a vital role in cellular survival by supplying ATP and metabolic substrates via oxidative phosphorylation and the Krebs cycle. Hence, mitochondrial dysfunction contributes to many human diseases, including metabolic syndromes, neurodegenerative diseases, cancer, and aging. Mitochondrial transfer between cells has been shown to occur naturally, and mitochondrial transplantation is beneficial for treating mitochondrial dysfunction. In this study, the migration of mitochondria was tracked in vitro and in vivo using mitochondria conjugated with green fluorescent protein (MT). When MT were used in a coculture model, they were selectively internalized into lung fibroblasts, and this selectivity depended on the mitochondrial functional states of the receiving fibroblasts. Compared with MT injected intravenously into normal mice, MT injected into bleomycin-induced idiopathic pulmonary fibrosis model mice localized more abundantly in the lung tissue, indicating that mitochondrial homing to injured tissue occurred. This study shows for the first time that exogenous mitochondria are preferentially trafficked to cells and tissues in which mitochondria are damaged, which has implications for the delivery of therapeutic agents to injured or diseased sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779580 | PMC |
http://dx.doi.org/10.3390/ijms232415734 | DOI Listing |
Transl Oncol
September 2025
Department of General Surgery, Affiliated Zhangjiagang Hospital of Soochow University. Electronic address:
Background: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Although mitochondrial metabolism contributes to tumorigenesis, the specific roles of individual mitochondrial components remain unclear.NADH:ubiquinone oxidoreductase core subunit S8 (NDUFS8), a key subunit of mitochondrial complex I, has been implicated in non-hepatic malignancies, but its functional relevance in HCC is unknown.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Henan International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Henan Medical University, Xinxiang, Henan Province 453003, China. Electronic address:
Non-small cell lung cancer (NSCLC) is the major type of malignant tumor in the lungs. Emerging epidemiological evidence implicates environmental copper exposure as a potential risk modulator for NSCLC progression. This study investigated the effects of low-dose Copper (Cu) exposure on A549 cells and evaluated the therapeutic potential of two natural compounds, osthole and matrine.
View Article and Find Full Text PDFIUBMB Life
September 2025
Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Osteosarcoma (OS) is an uncommon malignancy with stagnant survival rates over the past four decades and early-stage metastasis, predominantly affecting children and adolescents. This study identified significant metabolic differences between metastatic and non-metastatic OS samples through bioinformatics analysis, highlighting key processes such as cell proliferation, mitochondrial assembly, and changes in mitochondrial membrane permeability. Among differentially expressed genes, Pleckstrin Homology And FYVE Domain Containing 1 (PLEKHF1) was the most significantly downregulated in metastatic OS samples.
View Article and Find Full Text PDFBr J Cancer
September 2025
Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
Background: Triple-negative type of breast cancer (TNBC) has limited therapeutic options and frequently metastasizes, leading to low survival rates. Oxidative phosphorylation (OXPHOS) is a driver of TNBC metastasis, but the signaling underlying this metabolic change is poorly understood.
Methods: We performed metabolic assays and assessed migratory and metastatic potential in cells with manipulated CDCP1/mitochondrial Src signaling.
J Mol Cell Biol
September 2025
Lingang Laboratory, Shanghai 200031, China.
The activation of hepatic stellate cells (HSCs), characterized by transdifferentiation from a quiescent state to a fibrogenic phenotype, is a core process of liver fibrosis. The metabolic reprogramming of HSCs plays a major role in this process to meet the high energy demands of myofibroblastic HSCs with multiple functions, such as extracellular matrix synthesis, migration, and proliferation. AMP-activated protein kinase (AMPK) is a gatekeeper of intracellular energy homeostasis, but its role in the activation of HSCs and the progression of liver fibrosis remains unclear.
View Article and Find Full Text PDF