Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The resilience of ecosystem function under global climate change is governed by individual species vulnerabilities and the functional groups they contribute to (e.g. decomposition, primary production, pollination, primary, secondary and tertiary consumption). Yet it remains unclear whether species that contribute to different functional groups, which underpin ecosystem function, differ in their vulnerability to climate change. We used existing upper thermal limit data across a range of terrestrial species (N = 1701) to calculate species warming margins (degrees distance between a species upper thermal limit and the maximum environmental temperature they inhabit), as a metric of climate change vulnerability. We examined whether species that comprise different functional groups exhibit differential vulnerability to climate change, and if vulnerability trends change across geographic space while considering evolutionary history. Primary producers had the broadest warming margins across the globe (μ = 18.72 °C) and tertiary consumers had the narrowest warming margins (μ = 9.64 °C), where vulnerability tended to increase with trophic level. Warming margins had a nonlinear relationship (second-degree polynomial) with absolute latitude, where warming margins were narrowest at about 33°, and were broader at lower and higher absolute latitudes. Evolutionary history explained significant variation in species warming margins, as did the methodology used to estimate species upper thermal limits. We investigated if variation in body mass across the trophic levels could explain why higher trophic level organisms had narrower warming margins than lower trophic level organisms, however, we did not find support for this hypothesis. This study provides a critical first step in linking individual species vulnerabilities with whole ecosystem responses to climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.161049DOI Listing

Publication Analysis

Top Keywords

warming margins
28
climate change
24
trophic level
16
vulnerability climate
12
functional groups
12
upper thermal
12
species
9
ecosystem function
8
individual species
8
species vulnerabilities
8

Similar Publications

Urbanization and climate warming have contributed to global amphibian declines in recent decades, and amphibians are particularly vulnerable to warming because temperature influences their physiological processes across all life stages. Tadpole responses to warming in tropical climates are relatively understudied, and previous studies demonstrated species-specific responses to warming temperature. Warming ponds may quicken tadpole development and increase thermal tolerances, but increasing local temperatures push populations towards their physiological limits.

View Article and Find Full Text PDF

Background And Aims: Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.

View Article and Find Full Text PDF

Global warming is accelerating the poleward and upward shifts in climatically suitable ranges of species. (switchgrass) is recognized for its dual value in China's dual-carbon strategy: mitigating food-energy land competition and restoring marginal ecosystems. However, the accuracy of habitat projections is constrained by three limitations: reliance on North American provenance data, uncalibrated model parameters, and insufficient scenario coverage.

View Article and Find Full Text PDF

Local Adaptation Drives Leaf Thermoregulation in Tropical Rainforest Trees.

Glob Chang Biol

September 2025

College of Science and Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Queensland, Australia.

Tropical forests play a critical role in biodiversity, carbon sequestration, and climate regulation, but are increasingly affected by heatwaves and droughts. Vulnerability to warming may vary within and between species because of phenotypic divergence. Leaf trait variation can affect leaf operating temperatures-a phenomenon termed 'limited homeothermy' when it helps avoid heat damage in warmer conditions.

View Article and Find Full Text PDF

Determining the factors leading to maladaptation is crucial for making informed conservation and management decisions, particularly in forests showing dieback and growth decline. We combined genomic and dendroecological methods to infer past and forecast future demographic trends in five silver fir (Abies alba Mill.) forests with varying levels of vigor in the species' southwestern range margin in the Pyrenees.

View Article and Find Full Text PDF