98%
921
2 minutes
20
Protein modification by ubiquitin-like proteins (UBLs) amplifies limited genome information and regulates diverse cellular processes, including translation, autophagy and antiviral pathways. Ubiquitin-fold modifier 1 (UFM1) is a UBL covalently conjugated with intracellular proteins through ufmylation, a reaction analogous to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control at the ER and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here we identify a UFM1 substrate, NADH-cytochrome b5 reductase 3 (CYB5R3), that localizes on the ER membrane. Ufmylation of CYB5R3 depends on the E3 components UFL1 and UFBP1 on the ER, and converts CYB5R3 into its inactive form. Ufmylated CYB5R3 is recognized by UFBP1 through the UFM1-interacting motif, which plays an important role in the further uyfmylation of CYB5R3. Ufmylated CYB5R3 is degraded in lysosomes, which depends on the autophagy-related protein Atg7- and the autophagy-adaptor protein CDK5RAP3. Mutations of CYB5R3 and genes involved in the UFM1 system cause hereditary developmental disorders, and ufmylation-defective Cyb5r3 knock-in mice exhibit microcephaly. Our results indicate that CYB5R3 ufmylation induces ER-phagy, which is indispensable for brain development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772183 | PMC |
http://dx.doi.org/10.1038/s41467-022-35501-0 | DOI Listing |
Antioxidants (Basel)
July 2025
Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved in SSC function.
Methods: SSCs were enriched from human orchiectomy samples using CD49f-based magnetic-activated cell sorting (MACS) and laminin-binding matrix selection.
Geroscience
June 2025
Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Córdoba, Spain.
Cytochrome b reductase 3 (CYB5R3) overexpression mimics several metabolic benefits of calorie restriction, with sex- and tissue-specific effects. This study aimed to investigate how CYB5R3 overexpression impacts hepatic metabolism in young mice, focusing on mitochondrial biogenesis, lipid metabolism, autophagy and nutrient sensing pathways thus establishing a baseline that allows for subsequent comparisons with older animals. The accrual of CYB5R3 polypeptide exhibited marked sexual dimorphism as it was increased by transgenesis only in females with predominant microsomal targeting but mainly located in the mitochondria in males.
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2025
Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
TP53 inactivation in human cancers often results from MDM2/MDMX overexpression, yet therapeutic targeting remains challenging owing to incomplete mechanistic understanding. Lipid droplet (LD) enrichment is identified as a key trigger for MDM2-mediated p53 degradation. High-fat diet (HFD)-induced LD accumulation in tumor cells elevates LD-surface MDM2 through Cyb5r3-Myh9 interactions, which recruit cytoplasmic p53/Myh9 complexes to LDs.
View Article and Find Full Text PDFFront Physiol
May 2025
School of Medicine, ShaoXing University, Shaoxing, Zhejiang Province, China.
Once considered passive carriers of oxygen, erythrocytes are now understood to play active roles in regulating oxygen homeostasis and redox balance. This review examines the molecular mechanisms through which red blood cells adapt to hypoxic conditions, including nitric oxide (NO)-driven changes in membrane properties, βCys93-dependent S-nitrosylation, adenosine-induced activation of glycolysis, and the development of hypoxic memory via eENT1 degradation. Enzymes such as RBC eNOS, CYB5R3, and G6PD are essential for maintaining NO availability and redox balance by controlling redox state and NADPH synthesis.
View Article and Find Full Text PDFInt J Mol Sci
May 2025
Laboratory of Molecular and Cellular Hematology, LR16IPT07, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia.
Hemoglobin disorders are among the most common inherited diseases worldwide. Their clinical manifestations range from anemia to more severe forms associated with neurological impairments. These complications can result as secondary consequences of the disease's clinical manifestations or be directly linked to genetic mutations.
View Article and Find Full Text PDF