A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The uncovered biases and errors in clinical determination of bone age by using deep learning models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: To evaluate AI biases and errors in estimating bone age (BA) by comparing AI and radiologists' clinical determinations of BA.

Methods: We established three deep learning models from a Chinese private dataset (CHNm), an American public dataset (USAm), and a joint dataset combining the above two datasets (JOIm). The test data CHNt (n = 1246) were labeled by ten senior pediatric radiologists. The effects of data site differences, interpretation bias, and interobserver variability on BA assessment were evaluated. The differences between the AI models' and radiologists' clinical determinations of BA (normal, advanced, and delayed BA groups by using the Brush data) were evaluated by the chi-square test and Kappa values. The heatmaps of CHNm-CHNt were generated by using Grad-CAM.

Results: We obtained an MAD value of 0.42 years on CHNm-CHNt; this result indicated an appropriate accuracy for the whole group but did not indicate an accurate estimation of individual BA because with a kappa value of 0.714, the agreement between AI and human clinical determinations of BA was significantly different. The features of the heatmaps were not fully consistent with the human vision on the X-ray films. Variable performance in BA estimation by different AI models and the disagreement between AI and radiologists' clinical determinations of BA may be caused by data biases, including patients' sex and age, institutions, and radiologists.

Conclusions: The deep learning models outperform external validation in predicting BA on both internal and joint datasets. However, the biases and errors in the models' clinical determinations of child development should be carefully considered.

Key Points: • With a kappa value of 0.714, clinical determinations of bone age by using AI did not accord well with clinical determinations by radiologists. • Several biases, including patients' sex and age, institutions, and radiologists, may cause variable performance by AI bone age models and disagreement between AI and radiologists' clinical determinations of bone age. • AI heatmaps of bone age were not fully consistent with human vision on X-ray films.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-022-09330-0DOI Listing

Publication Analysis

Top Keywords

clinical determinations
32
bone age
24
radiologists' clinical
16
biases errors
12
deep learning
12
learning models
12
clinical
9
age
8
determinations
8
kappa 0714
8

Similar Publications