Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Normothermic machine perfusion (NMP) is typically performed after a period of hypothermic preservation, which exposes the kidney to an abrupt increase in temperature and intravascular pressure. The resultant rewarming injury could be alleviated by gradual rewarming using controlled oxygenated rewarming (COR). This study aimed to establish which rewarming rate during COR results in the best protective effect on renal rewarming injury during subsequent NMP.

Methods: Twenty-eight viable porcine kidneys (n = 7/group) were obtained from a slaughterhouse. After these kidneys had sustained 30 min of warm ischemia and 24 h of oxygenated HMP, they were either rewarmed abruptly from 4-8 °C to 37 °C by directly initiating NMP or gradually throughout 30, 60, or 120 min of COR (rate of increase in kidney temperature of 4.46%/min, 2.20%/min, or 1.10%/min) before NMP.

Results: Kidneys that were rewarmed during the course of 120 min (COR-120) had significantly lower fractional excretion of sodium and glucose at the start of NMP compared with rewarming durations of 30 min (COR-30) and 60 min (COR-60). Although COR-120 kidneys showed superior immediate tubular function at the start of normothermic perfusion, this difference disappeared during NMP. Furthermore, energetic recovery was significantly improved in COR-30 and COR-120 kidneys compared with abruptly rewarmed and COR-60 kidneys.

Conclusions: This study suggests that a rewarming rate of 1.10%/min during COR-120 could result in superior immediate tubular function and energetic recovery during NMP. Therefore, it may provide the best protective effect against rewarming injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9946163PMC
http://dx.doi.org/10.1097/TP.0000000000004427DOI Listing

Publication Analysis

Top Keywords

tubular function
12
energetic recovery
12
rewarming injury
12
rewarming
9
controlled oxygenated
8
oxygenated rewarming
8
function energetic
8
porcine kidneys
8
normothermic machine
8
machine perfusion
8

Similar Publications

Objective: Cisplatin-induced acute kidney injury (Cis-AKI) is a significant cause of renal damage, characterized by tubular injury, ferroptosis, and oxidative stress. While therapeutic options for Cis-AKI remain limited, identifying novel targets to prevent kidney injury is critical. This study focuses on GALNT14, a gene associated with ferroptosis, and its potential role in mitigating Cis-AKI.

View Article and Find Full Text PDF

Extracorporeal membrane oxygenation (ECMO) is a high-risk, invasive therapy that sustains life through an external system. However, it often leads to complications such as bleeding, thrombosis, infection, and acute kidney injury (AKI). While up to 70% of ECMO patients develop AKI, the mechanisms driving this injury remain unclear, and effective treatments are limited.

View Article and Find Full Text PDF

Background: Asymmetric underexpansion of transcatheter heart valves (THVs), as observed on fluoroscopy, may influence prosthesis function or long-term durability of transcatheter aortic valve implantation (TAVI).

Aims: This study aimed to evaluate the effect of stent frame asymmetry on hemodynamic performance and clinical outcomes in ACURATE neo and neo2 THVs.

Methods: In a retrospective registry, the TAVI asymmetry index was defined as the ratio of the THV stent frame diameter.

View Article and Find Full Text PDF

Lithium-induced kidney injury is commonly associated with the development of nephrogenic diabetes insipidus. Longer term lithium exposure is associated with the development of chronic interstitial fibrosis. The mechanisms of lithium-induced kidney injury are multifaceted, affecting many intracellular cell signaling pathways associated with cell cycle regulation, cell proliferation, and subsequent increased extracellular matrix formation and interstitial fibrosis.

View Article and Find Full Text PDF

Autosomal recessive renal tubular dysgenesis (RTD) is a rare genetic disorder caused by defects in the renin-angiotensin system, with the most common outcomes being foetal or neonatal death from renal failure, pulmonary hypoplasia and/or refractory arterial hypotension. A small proportion of patients survive past the neonatal period. We present the case of a toddler with RTD due to compound heterozygous variants in the gene that codes for ACE, who has not required renal replacement therapy to date and in whom fludrocortisone has achieved electrolyte and acid/base balance.

View Article and Find Full Text PDF